diff --git a/Predictions/Human Resources - Full.ipynb b/Predictions/Human Resources - Full.ipynb
deleted file mode 100644
index 93ba1b6..0000000
--- a/Predictions/Human Resources - Full.ipynb
+++ /dev/null
@@ -1,2888 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "a081d1b8",
- "metadata": {},
- "source": [
- "# Table of Contents: \n",
- "* [Introduction](#intro)\n",
- "* [Read The Data](#readdata)\n",
- "* [Feature Engineering Part I - Handling Missing Values](#misvalues)\n",
- "* [Feature Engineering Part II - Dictionary](#dictio)\n",
- "* [Feature Engineering Part III - Reformatting](#reform)\n",
- "* [Answering The Questions](#ans)\n",
- " * [Is there any relationship between who a person works for and their performance score?](#question1)\n",
- " * [What is the overall diversity profile of the organization?](#question2)\n",
- " * [Can we predict who is going to terminate and who isn't? What level of accuracy can we achieve on this?](#question3)\n",
- " * [Are there areas of the company where pay is not equitable?](#question4)\n",
- " * [What are our best recruiting sources if we want to ensure a diverse organization](#question5)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "05deb58c",
- "metadata": {},
- "source": [
- "# Introduction \n",
- "Hi Everyone! Today I'll demonstrate my workflow to analyze a **Kaggle** dataset called `Human Resources`. Read more about it [here.](https://www.kaggle.com/datasets/rhuebner/human-resources-data-set)\n",
- "\n",
- "The table of contents provide an outline to what we're going from start to finish, and the questions answered in this notebook are also in the table of contents."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "bd677831",
- "metadata": {},
- "source": [
- "# Read The Data \n",
- "We begin by grabbing the data and import the necessary libraries. You can grab the data locally, from kaggle, or use the existing link as I've uploaded the csv into my github repo."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "ea2728d9",
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "import pandas as pd"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "b31f6f9b",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ],
- "text/plain": [
- " Employee_Name EmpID MaritalStatusID GenderID \\\n",
- "0 Adinolfi, Wilson K 10026 0 1 \n",
- "1 Ait Sidi, Karthikeyan 10084 1 1 \n",
- "2 Akinkuolie, Sarah 10196 1 0 \n",
- "\n",
- " FromDiversityJobFairID Salary Termd EngagementSurvey EmpSatisfaction \\\n",
- "0 0 62506 0 4 5 \n",
- "1 0 104437 1 4 3 \n",
- "2 0 64955 1 3 3 \n",
- "\n",
- " SpecialProjectsCount ... State_E Position_E CitizenDesc_E RaceDesc_E \\\n",
- "0 0 ... 11 23 3 6 \n",
- "1 6 ... 11 31 3 6 \n",
- "2 0 ... 11 24 3 6 \n",
- "\n",
- " TermReason_E EmploymentStatus_E Department_E ManagerName_E \\\n",
- "0 4 1 4 18 \n",
- "1 6 3 3 20 \n",
- "2 8 3 4 16 \n",
- "\n",
- " RecruitmentSource_E PerformanceScore_E \n",
- "0 6 1 \n",
- "1 5 2 \n",
- "2 6 2 \n",
- "\n",
- "[3 rows x 28 columns]"
- ]
- },
- "execution_count": 86,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "encoded_df.head(3)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 87,
- "id": "808f2723",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "RangeIndex: 311 entries, 0 to 310\n",
- "Data columns (total 28 columns):\n",
- " # Column Non-Null Count Dtype \n",
- "--- ------ -------------- ----- \n",
- " 0 Employee_Name 311 non-null object\n",
- " 1 EmpID 311 non-null int64 \n",
- " 2 MaritalStatusID 311 non-null int64 \n",
- " 3 GenderID 311 non-null int64 \n",
- " 4 FromDiversityJobFairID 311 non-null int64 \n",
- " 5 Salary 311 non-null int64 \n",
- " 6 Termd 311 non-null int64 \n",
- " 7 EngagementSurvey 311 non-null int64 \n",
- " 8 EmpSatisfaction 311 non-null int64 \n",
- " 9 SpecialProjectsCount 311 non-null int64 \n",
- " 10 DaysLateLast30 311 non-null int64 \n",
- " 11 Absences 311 non-null int64 \n",
- " 12 DOB_Year 311 non-null int64 \n",
- " 13 DOB_Month 311 non-null int64 \n",
- " 14 DOB_Day 311 non-null int64 \n",
- " 15 DateofHire_Year 311 non-null int64 \n",
- " 16 DateofHire_Month 311 non-null int64 \n",
- " 17 DateofHire_Day 311 non-null int64 \n",
- " 18 State_E 311 non-null int64 \n",
- " 19 Position_E 311 non-null int64 \n",
- " 20 CitizenDesc_E 311 non-null int64 \n",
- " 21 RaceDesc_E 311 non-null int64 \n",
- " 22 TermReason_E 311 non-null int64 \n",
- " 23 EmploymentStatus_E 311 non-null int64 \n",
- " 24 Department_E 311 non-null int64 \n",
- " 25 ManagerName_E 311 non-null int64 \n",
- " 26 RecruitmentSource_E 311 non-null int64 \n",
- " 27 PerformanceScore_E 311 non-null int64 \n",
- "dtypes: int64(27), object(1)\n",
- "memory usage: 68.2+ KB\n"
- ]
- }
- ],
- "source": [
- "encoded_df.info()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "id": "22f83be5",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Optional, Saving the df\n",
- "# encoded_df.to_csv('HRDataset_v14_Formatted.csv', index=False)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "7fc06848",
- "metadata": {},
- "source": [
- "And that concludes our EDA! I am keeping the `Employee_Name` column for later use. The end result has no NaN values, and data types are all `int64` except `Employee_Name`\n",
- "\n",
- "Right now, there are 3 dataframes that we can go forward with:\n",
- "- `data_original` as the original dataframe.\n",
- "- `df` as the dataframe that still contains the textual values, but its columns has already been pruned.\n",
- "- `encoded_df` is pretty much the same as `df`, but the values are already encoded, to be put into ML Models."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "1c86088b",
- "metadata": {},
- "source": [
- "# Answering The Questions \n",
- "After going through the EDA, now we will start to explore the questions, and if able to, provide reasoning.\n",
- "\n",
- "[Back To Top](#top)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "412d0e1d",
- "metadata": {},
- "source": [
- "## Is there any relationship between who a person works for and their performance score? \n",
- "For this question, we will need mainly three columns from `encoded_df`:\n",
- "- `ManagerName_E`\n",
- "- `PerformanceScore_E`\n",
- "- `EmpID`\n",
- "\n",
- "By having a dictionary previously made called `label_encoders`, we can use the **keys** contained inside it to show the textual values before the data were encoded.\n",
- "\n",
- "[Back To Top](#top)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 104,
- "id": "31e81f09",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "ManagerName_E\n",
- "Debra Houlihan 2.333333\n",
- "John Smith 2.285714\n",
- "Lynn Daneault 2.153846\n",
- "Peter Monroe 2.142857\n",
- "Michael Albert 2.136364\n",
- "Amy Dunn 2.095238\n",
- "Brannon Miller 2.090909\n",
- "Kissy Sullivan 2.045455\n",
- "Webster Butler 2.000000\n",
- "Board of Directors 2.000000\n",
- "Brandon R. LeBlanc 2.000000\n",
- "Brian Champaigne 2.000000\n",
- "David Stanley 2.000000\n",
- "Elijiah Gray 2.000000\n",
- "Ketsia Liebig 1.952381\n",
- "Kelley Spirea 1.909091\n",
- "Janet King 1.894737\n",
- "Alex Sweetwater 1.888889\n",
- "Simon Roup 1.882353\n",
- "Jennifer Zamora 1.857143\n",
- "Eric Dougall 1.750000\n",
- "Name: PerformanceScore_E, dtype: float64"
- ]
- },
- "execution_count": 104,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# The main code\n",
- "# encoded_df.groupby('ManagerName_E')['PerformanceScore_E'].mean().sort_values(ascending=False)\n",
- "\n",
- "# We add information from previously made Dicts to make it a better contextual result\n",
- "encoded_df.groupby('ManagerName_E')['PerformanceScore_E'].mean().sort_values(ascending=False).rename(index=label_encoders['ManagerName'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 105,
- "id": "b456a397",
- "metadata": {},
- "outputs": [],
- "source": [
- "import seaborn as sns\n",
- "import matplotlib.pyplot as plt"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 111,
- "id": "65e9e8de",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAENCAYAAADt3gm6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdYUlEQVR4nO3debgcZZn+8e9NEghbEiRBtoSwRJiwBDAkbA6bIkEWUdQwAhIdIsoqosjIMgPoAM7IICAQhlV2BJkEEAYYGEVBCAiBsAz8cCGyo4Yfi2DgmT/e90wqTZ+cqj6n+qST+3NdfZ3anqrndHfVU/VWdZUiAjMzW7It1d8JmJlZ/3MxMDMzFwMzM3MxMDMzXAzMzAwY2N8JtGL48OExevTo/k7DzKyjPPDAA69ExIhm4zqyGIwePZqZM2f2dxpmZh1F0u+6G+dmIjMzczEwMzMXAzMzw8XAzMxwMTAzM1wMzMwMFwMzM8PFwMzMcDEwMzM69BfI1vnOvu83lWMOnrB2DZmYGfjIwMzMcDEwMzNcDMzMDJ8zMOtIPudifc1HBmZm5mJgZmYuBmZmhouBmZnhYmBmZrgYmJkZLgZmZoaLgZmZ4WJgZma4GJiZGS4GZmaG701kZh3I92bqey4GZrbEqVpMGgtJb+MXRW4mMjMzFwMzM3MxMDMzlvBzBp3c7ucTaGbWl3xkYGZmLgZmZuZiYGZmLOHnDMysf/ic16Kn1iMDSSMl3SnpcUmzJR3eZBpJ+oGkpyXNkrR5nTmZmdn71X1kMA/4ekQ8KGlF4AFJt0XEY4VpJgFj8msicE7+a2ZmbVLrkUFEPB8RD+bu/w88DqzRMNmewKWR3AsMk7RanXmZmdmC2nbOQNJoYDPgVw2j1gCeLfTPycOeb4ifCkwFGDVqVG15VtHJ9zfpbZttf7f59vfyzfpTHduOtlxNJGkF4DrgiIh4rXF0k5B434CIaRExPiLGjxgxoo40zcyWWLUXA0mDSIXg8oi4vskkc4CRhf41gefqzsvMzOar+2oiARcAj0fE97uZbDqwf76qaEtgbkQ83820ZmZWg7rPGWwD7Ac8IumhPOwfgFEAEXEucDOwK/A08CYwpeaczMysQa3FICLupvk5geI0ARxcZx5m1rd8An/x49tRmJmZi4GZmfneRGZLJDfzWCMfGZiZWWcfGXTyk8qss3nP2hY3HV0MzMw60aK4I+tmIjMz85GBWX9wM5MtanxkYGZmLgZmZuZiYGZmuBiYmRkuBmZmhouBmZnhYmBmZpQoBpK+Wej+TMO479aRlJmZtVeZH51NBk7L3ccA1xbG7UJ6cplZR/GPvswWVKaZSN10N+s3M7MOVKYYRDfdzfrNzKwDlWkmGifpNdJRwLK5m9w/uLbMzMysbXosBhExoMyMJK0UEX/qfUpmZtZufXlp6R19OC8zM2ujviwGPplsZtah+rIY+GSymVmH8i+QzczMzURmZlaxGEjaVtKU3D1CUvEnmTv1aWZmZtY2pYuBpBOAo0m3pAAYBFzWNT4i/ti3qZmZWbtUOTLYC9gDeAMgIp4DVqwjKTMza68qxeCdiAjyVUOSlq8nJTMza7cqxeAaSecBwyQdCNwOnF9PWmZm1k5l7k2EJAFXAxsArwHrA8dHxG015mZmZm1SqhhEREi6ISI+DLgAmJktZqo0E90raYvaMjEzs35T6sgg2wE4SNJvSVcUiXTQsEkdiZmZWftUKQaTasvCzMz6Velmooj4HTAM2D2/huVh3ZJ0oaSXJD3azfjtJc2V9FB+HV8hdzMz6yNVfoF8OHA5sEp+XSbp0B7CLgZ26WGan0fEpvl1Ytl8zMys71RpJvoSMDEi3gCQdCpwD3BmdwER8TNJo3uVoZmZ1a7K1UQC3i30v0vf3Kl0K0kPS/qppA27Xbg0VdJMSTNffvnlPlismZl1qXJkcBHwK0k/yf2fBC7o5fIfBNaKiNcl7QrcAIxpNmFETAOmAYwfP94P0jEz60NVTiB/H5gC/BH4EzAlIv6tNwuPiNci4vXcfTMwSNLw3szTzMyqK31kIGlLYHZEPJj7V5Q0MSJ+1erCJa0KvJh/4TyBVJxebXV+ZmbWmirNROcAmxf632gybAGSrgS2B4ZLmgOcQHoOAhFxLrA38BVJ84C3gMn5zqhmZtZGVYqBihvqiHhP0kLjI2KfHsafBZxVIQczM6tBlauJnpF0mKRB+XU48ExdiZmZWftUKQYHAVsDf8ivicDUOpIyM7P2Kt1MFBEvAZNrzMXMzPpJj0cGkg6UNCZ3K99vaK6kWZK6PXlsZmado0wz0eHAb3P3PsA4YB3gSOCMetIyM7N2KlMM5kXEX3P3bsClEfFqRNwOLF9famZm1i5lisF7klaTNBjYCbi9MG7ZetIyM7N2KnMC+XhgJjAAmB4RswEkbYcvLTUzWyz0WAwi4kZJawErRsSfCqNmAp+rLTMzM2ubUr8ziIh5wNuSjpN0fh68OulWE2Zm1uGq/OjsIuBtYKvcPwc4uc8zMjOztqtSDNaNiNOAvwJExFv0zcNtzMysn1UpBu9IWhYIAEnrko4UzMysw1W5a+kJwC3ASEmXA9sAB9SRlJmZtVeVexPdJulBYEtS89DhEfFKbZmZmVnblG4mkrQX6dfIN0XEjcA8SZ+sLTMzM2ubKucMToiIuV09EfFnUtORmZl1uCrFoNm0Vc45mJnZIqpKMZgp6fuS1pW0jqTTgQfqSszMzNqnSjE4FHgHuBq4FvgLcHAdSZmZWXtVuZroDeBbNeZiZmb9pHQxkPQh4ChgdDEuInbs+7TMzKydqpwAvhY4F/h34N160jEzs/5QpRjMi4hzasvEzMz6TZUTyDMkfTU/9ewDXa/aMjMzs7apcmTwhfz3G4VhAazTd+mYmVl/qHI10dp1JmJmZv2n0i+IJW0EjAUGdw2LiEv7OikzM2uvKpeWnkB6zOVY4GZgEnA34GJgZtbhqpxA3hvYCXghIqYA44BlasnKzMzaqkoxeCsi3iPdunoI8BI+eWxmtliocs5gpqRhwPmkG9S9DtxXR1JmZtZeVa4m+mruPFfSLcCQiJhVT1pmZtZOVa8m2oTCvYkkrRcR19eQl5mZtVGVq4kuBDYBZgPv5cEBuBiYmXW4KkcGW0bE2CozzwVkN+CliNioyXgBZwC7Am8CB0TEg1WWYWZmvVflaqJ7JFUqBsDFwC4LGT8JGJNfUwHfCM/MrB9UOTK4hFQQXgDeBgRERGzSXUBE/EzS6IXMc0/g0ogI4F5JwyStFhHPV8jLzMx6qUoxuBDYD3iE+ecMemsN4NlC/5w87H3FQNJU0tEDo0aN6qPFm5kZVCsGv4+I6X28fDUZFs0mjIhpwDSA8ePHN53GzMxaU6UYPCHpCmAGqZkIgF5eWjoHGFnoXxN4rhfzMzOzFlQpBsuSisDOhWG9vbR0OnCIpKuAicBcny8wM2u/UsVA0gDglYj4Ro8TLxh3JelOp8MlzQFOAAYBRMS5pLuf7go8Tbq0dEqV+ZuZWd8oVQwi4l1Jm1edeUTs08P4AA6uOl8zM+tbVZqJHpI0HbgWeKNroG9HYWbW+aoUgw8ArwI7Fob5dhRmZouBKnctdXu+mdliqvTtKCStKeknkl6S9KKk6yStWWdyZmbWHlXuTXQR6VLQ1Um/Ep6Rh5mZWYerUgxGRMRFETEvvy4GRtSUl5mZtVGVYvCKpH0lDcivfUknlM3MrMNVKQZfBD4LvEC6kdzeeZiZmXW4Hq8mknRqRBwNTIyIPdqQk5mZtVmZI4NdJQ0Cjqk7GTMz6x9lfmdwC/AKsLyk18gPtWH+w22G1JifmZm1QY9HBhHxjYgYCtwUEUMiYsXi3zbkaGZmNSt1AjnftXT5mnMxM7N+UqoYRMS7wJuShtacj5mZ9YMqN6r7C/CIpNtY8K6lh/V5VmZm1lZVisFN+WVmZouZKnctvUTSssCoiHiyxpzMzKzNqty1dHfgIdKlpkjaND/sxszMOlyV21H8IzAB+DNARDwErN3nGZmZWdtVKQbzImJuw7Doy2TMzKx/VDmB/KikvwMGSBoDHAb8sp60zMysnaocGRwKbAi8DVwBzAWOqCEnMzNrszJ3LR0MHASsBzwCbBUR8+pOzMzM2qfMkcElwHhSIZgE/EutGZmZWduVOWcwNiI2BpB0AXBfvSmZmVm7lTky+GtXh5uHzMwWT2WODMbl5xhAeobBssXnGvg21mZmna/HYhARA9qRiJmZ9Z8ql5aamdliysXAzMxcDMzMzMXAzMxwMTAzM1wMzMwMFwMzM6MNxUDSLpKelPS0pG81Gb+9pLmSHsqv4+vOyczMFlTleQaVSRoAnA18DJgD3C9pekQ81jDpzyNitzpzMTOz7tV9ZDABeDoinomId4CrgD1rXqaZmVVUdzFYA3i20D8nD2u0laSHJf1U0obNZiRpqqSZkma+/PLLdeRqZrbEqrsYqMmwxucmPwisFRHjgDOBG5rNKCKmRcT4iBg/YsSIvs3SzGwJV3cxmAOMLPSvCTxXnCAiXouI13P3zcAgScNrzsvMzArqLgb3A2MkrS1paWAyML04gaRVJSl3T8g5vVpzXmZmVlDr1UQRMU/SIcCtwADgwoiYLemgPP5cYG/gK5LmAW8BkyOisSnJzMxqVGsxgP9r+rm5Ydi5he6zgLPqzsPMzLrnXyCbmZmLgZmZuRiYmRkuBmZmhouBmZnhYmBmZrgYmJkZLgZmZoaLgZmZ4WJgZma4GJiZGS4GZmaGi4GZmeFiYGZmuBiYmRkuBmZmhouBmZnhYmBmZrgYmJkZLgZmZoaLgZmZ4WJgZma4GJiZGS4GZmaGi4GZmeFiYGZmuBiYmRkuBmZmhouBmZnhYmBmZrgYmJkZLgZmZoaLgZmZ4WJgZma4GJiZGS4GZmZGG4qBpF0kPSnpaUnfajJekn6Qx8+StHndOZmZ2YJqLQaSBgBnA5OAscA+ksY2TDYJGJNfU4Fz6szJzMzer+4jgwnA0xHxTES8A1wF7NkwzZ7ApZHcCwyTtFrNeZmZWYEior6ZS3sDu0TE3+f+/YCJEXFIYZobgVMi4u7cfwdwdETMbJjXVNKRA8D6wJMLWfRw4JVepO54x/dXfCfn7vhFP36tiBjRbMTAXiy0DDUZ1lh9ykxDREwDppVaqDQzIsaXmdbxjl+U4js5d8d3dnzdzURzgJGF/jWB51qYxszMalR3MbgfGCNpbUlLA5OB6Q3TTAf2z1cVbQnMjYjna87LzMwKam0mioh5kg4BbgUGABdGxGxJB+Xx5wI3A7sCTwNvAlP6YNGlmpMc7/hFML6Tc3d8B8fXegLZzMw6g3+BbGZmLgZmZuZisMiR1OxS23Ysd/lexq/aX7nb4qW33yN/D1uzWBWDfPuLVmPXkzRe0jItxm8oaTtJK7cQu23+QR4REa18mSXtLunwqnE5dk/gVEmrtBj/ceAnLHiJcJX4LSXtl/8u3UL8mPzZDejNd6Bhnv26QenEDaKkZXsZvyqkdaDF+DG9iW+YV1vff0kjJS3dtVMmqdK2uU8+74jo+BfwoUL3gBbidwNmAXcCVxbnVzJ+Uo6/AbgJWLVk3FLACsBs4DHgoOK4CsvfGXgI+FgL//t2wBOtxDYs+7fAGS3E75Hfu0uAHwNjKsZ/EngYuA44A/gqsHwLeUzM78UWhWGqED+klfevEL85sC0wocX4rYBdevE5TgL260X+Hwe+AQzuxfKvAdZrMf5jwMvAF1uM3xE4EDiwxfgJwDbA+KrfH+ATwKPAefk9WD8PL7UNyPFHAiv06jvYm+BF4ZU35G8CVxSGlS4IwNZ5Y7hZ7v8h6RLYsvHbA//TtRKT9pA/WvF/+CbwdeBS4GsVY7cGXiwsfyiwFrBcyfgjgaNy9+p5pZoIDC0R+1HSJcEbAoOA/wT+tkLuK5MuO94o918IfAZYpcxGJcf/FBib+79I+m3LscCKFfKYBDxFuizvBuCCwrgeV2jgU6SCNLHsCtzkO/zr/PlfA3y5YvyuefmnkXZG9qiY/2DS733eAvZsIf9JefnbNxlXZvkTgd8DOzYZ1+P7SSqCD+X37x/KLrch/0eBo4C7gH0q5v+J/P9/N+dwXpl40t0XRgKP5O3IB/N24DlgwzL/P7AF8EZeD6fSi4LQUtCi8gKWB27Jb8LFwGWFcaUKAmljekChf0TeICxTMv5vgB1y96r5g7yBVOX3LvllOhL4N2An0pHJ94F/zl+Wnr4M65N+xb0naeN4J+m3G9eUWT5wGPOLwS/z8n8EXAas1EPsx4Gtc/cw4EzgK11f9BL/91DgZznPIcAzwAzgCuBketjDz/E/L25ESEcXZxRX6B7mMYB0A8X9cv8Q4G7gx4VpFrZCj87T35bnM77M/16I34x0ZDQu938GOL1C/ObATGCr3H8y6WhrlTL5F6Y5MOf/G+ALeViZDfHYHDM196+cv5Mbl10+sC/wndy9Omnjun9hfLd5kDaivwY+TFp3X6DC0RFpG3Ir8IncfwiwDyX38IHlSDskO+X+UcBLlNyhzN+/acAaXcshrZN/oEQLBbAD6eh8c9K6fzCFglDmM/y/actOuKi+8pdnBdINmn5MoSBU+DCGFLrXzF+uEXnYyhXm9W3g2Nw9Bbi6az49xK0LfCt3f510pHN2heWOI21I5+SVeinSXvKVwAd6iN2IdNO/q4Apedg6wLnAx0suf6n8d5e8Mm5cIfe9gQeAe4Hj8rAdScV9XIn4g0jFaz/gO6Qi9uWyK2Oex9E0NJGQisx5JWJHAdvl7uNJe9jjgYEN0zXdoJB2RorNg+sB95H2GMtsxCcAW+buD5B2Rmbk9+TMEvGD8t89SYXow6SjpFNJRXWhO1V5+h8Cf58//9vz9/62MsvP89iedKv7kcCDwCmkAndVidhdSTe/7Oo/hHSEObTkspfP37VPAJuSmjuvJu0YXVcy/hry0W0e9j1S0++/LiRuPdJe/cp5ed9sGP/NnNfgZt+DHL8JaYdo5TxsIvBf+T1YIQ9btvR6UHbCTnjlN/Y6ckEgVcsNKsQPJBWWO3L/50nPVyj9hjbM72Zg8xLTrQ5cRNqQP5U3KjOo0FxA2kM7uGHYLcCmJWJ3J+3dnVgYdj6wbwv/84nAMZQ4qinErJRXoN0Kw66j0NyxkNih+XO6iMIeNXAjC2nHZ8HzTPuSmglGFYZ17VyMLRE/tNB9XP7stsj9TQtjQ3zXjscA0p7mDObvoDQ9h9IQP4C0A3Aw8/fq1yTtKW7fU3zuXxu4MncfBbzDQnZIGpa/DXA68P9Ixbmr+eN24CMl4seRiui3gSMLw+8BDusmfv2G/q4dkgl5XmsVh/ew/COAa0lF+LTC8Pvo5gizIf4fSTtinyG1CJxF2qE6HxjWJLbrHOV/52n3IBWhYwrTjKabnZFC/F3A5Sx4FLYlqSBMJhWFH9GwY9LtZ1pmok565ZX4ItJ5gKeANVuYx8WkZpoHuluZm8Soof/TOb7syeQTSe2mu+f+HYCRvXgfupb/wRLTDgT2Jx1dfCm/ZgLrtrjcu6l4Ip/UbnsR6ZB3D9Ie4ugK8UsVuvcn7dk1bWZi/nmmqwrDTgKeZcGCcBWFvc4m8VcWhi1d6D6O1NR1Sl5pVymx/K6N2VKknYghpKOd6TQ01zVbfh6+TEP/BeRmvG7ii+fZVgJ+AHyWdDHDscCrwOdKvn8TgL2arEdblnz/DsrfvzPJxZW0dzylZPzAhv97xkK+K83yXy5/bz5aGHYasPdC4q8uDDs8v2enMv9o6z+A1RpiG89RTiM17a1OWv+PJe31H0BaBxs/+27PcTK/mWkk8Dzp+7xJ6XWoygrbKS/ga1Rsruh6M4GlSXs4v6filS15HsuQNqazKRw6logbCXy40F/5RGThf/hiXqE3rBi7Oekk2L9Wfe8a5nMNFTbkOWYYqa30v0ltuONaXHbX/97dHnnjeabiBuUk0onAL5P2Uh8H1u4hvnieaplC912kJpuNK8QPIBXma4F/zxuDsRXiixvET5FOpq9VIf4U4G3g07l/Oxqu7mkSXywoyxa6P11y+cX4A/NnfwTwT/n936BC/svkv8OB64FtS3z+xeV/gbTeT8jjf837j6C6/f40TLcvaadoeMPwZucob8rd65CauH6YP/v3fYe7ib+BtN1ZqjDNn6m6/reywi3KL9Iezm1UqIhN5nFA1TeyEDuI1I65fovxpU8+dhdPaoMt3TzWh+99r3LP81iRXlymSbqSaqGXJ/L+80zFgrAX8BXSxrhpMW8Sf1nD+A/lDcm4FuNvIBW0pt+hhcXn79/BpKPCsvlfkYcv1bXxW9hn2ST+8obxXyAVgrLLL77/25KaLU9u5f/P45cj7aE3PSpfWP7MP6q7ser7l8cNJJ07uY8mTbR0f45ytcL3dyDdnPNYSPyIQm470MJR/WJ5ozpJgyPiL72IVyyOb4y9T/6R4DTgnYjYR9KGwOsR8buK8W9FxL6SNiU18TwWET0+sapJ/BjSxQeXRcRjLcRvQLrK66aIeLrF/N+OiMd7iu0m/m9IG6NbIuKZCvFd7/8mwKsR8YcWlz+e1H7/UkS8VyH+rxExWdI6zP/83mlh+RuR9vDvi4gXeogdSDpB/B8RsZOkfYGPAEdExFsllt0Y/3nSSeRjIuKNnuLfNz9v82xJJ2k46QT21qS9re0jYk4L8Vvl+O0iovQDmgrx2+RBH4mIF1uI35p0ZPi3PW2Iuonvyn+HFv//ruVvFxWeSdLH7//AXsRvk/Pvzf+/FNU//4tJbfw7k5qAHikb2yR+SkTMqhLfZbG6HYVZK/Ie/CzSlUl7VdkQNMQPAz5VZUPQED+E1F5fuhA0xA/N8aULQUP8MFL+rf7/Xcuv9HCqPn7/exM/hN7//6U///xAr6VJRwOfByZXKQTdxLdUCKD+ZyCbLfIkrUQ6z7Nz1b0yxzu+1fjcFP2OpJOA+yPiqSrL7W18IzcTmdEn55kc7/iW4nt7jrKvznG6GJiZmc8ZmJmZi4GZmeFiYGZmuBiYmRkuBmZmhouBdRBJIelHhf6Bkl6WdGN/5tWMpNE530MLw86SdEA/5HKXpCclPZRfP253Drbo84/OrJO8AWwkadl875aPkZ4ItUjJ94yB9MSrwyWdV+Y+NzX7fETM7OccbBHmIwPrND8lPZUK0uMJr+waIWmCpF9K+nX+u34efoCk6yXdIukpSacVYs6RNFPSbEn/VBi+q6QnJN0t6QddRx+Slpd0oaT783L2LCzjWkkzSM+ChvSA9jtId/FcgKQD8zwelnSdpOXy8ItzTndKekbSdnl5j+d70HTF7yzpHkkP5uWu0Bdvri25XAys01wFTJY0mPTYv18Vxj1BuknbZqSnxX23MG5T4HPAxsDnJI3Mw78dEePzvLaTtEme93nApIjYlnTP+C7fBv4rIrYg3Z3ze5KWz+O2Ij1pbMfC9KcAX5c0oOH/uD4itoiIcaT79n+pMG4l0qM/v0Z66tnpwIbAxpI2zTdGO5b0IJauZyAfufC3jcsLzUTf62FaWwK5mcg6SkTMkjSadFRwc8PoocAlSreBDtK9/bvcERFzASQ9Rrpv/LPAZyVNJa0Lq5EeH7oU8ExE/CbHXkl6mAnkJ7FJOir3DyY9Bxngtoj4Y0O+v5F0H/B3DbluJOlk0s3VViA91KXLjIgISY8AL3bd70bSbNLjENfMef5CEqQHMt3T9A2bz81EtlAuBtaJpgP/QnqIz8qF4ScBd0bEXrlg3FUY93ah+11goKS1Sc/73SIi/pSbYQaTbmPcHZHuzPnkAgOliaRzGs18l/QQlJ8Vhl0MfDIiHs4nlbdvkut7DXm/R1pn3yUVnn0WkqdZJW4msk50IXBikztEDmX+CeUDSsxnCGkDPlfSB0nPYYbU3LROLiiQmpe63AocqrxLLmmznhYSEU+Qnly2W2HwisDzkgaRbj9cxb3ANpLWyzksJ+lDFedhtgAXA+s4ETEnIs5oMuo04J8l/YL0kJSe5vMw6ZGBs0kF5hd5+FvAV4FbJN0NvAjMzWEnkZqfZkl6NPeX8R1S806X40jnO24jFZ/SIuJlUrG7UtIsUnHYoIew4jmD26ssz5YMvmupWROSVoiI1/MRwNnAUxFxen/nZVYXHxmYNXegpIdIRw1DSVcXmS22fGRgtpiQ9BNg7YbBR0fErc2mNytyMTAzMzcTmZmZi4GZmeFiYGZmuBiYmRnwv8F12G9s3f5xAAAAAElFTkSuQmCC\n",
- "text/plain": [
- "
"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Create the bar plot\n",
- "sns.barplot(x='ManagerName_E', y='PerformanceScore_E', data=encoded_df, ci = 0, color = 'skyblue')\n",
- "\n",
- "# Rotate x-axis labels for better readability\n",
- "plt.xticks(rotation=45)\n",
- "\n",
- "# Remove lines on top of each bar\n",
- "ax = plt.gca()\n",
- "\n",
- "# Show the plot\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "02466434",
- "metadata": {},
- "source": [
- "Though there are highs and lows, visually, there are no apparent disparity between each Managers to performance score."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 114,
- "id": "f3c0b2de",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
ManagerName_E
\n",
- "
PerformanceScore_E
\n",
- "
EmpID
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
ManagerName_E
\n",
- "
1.000000
\n",
- "
0.002957
\n",
- "
0.047830
\n",
- "
\n",
- "
\n",
- "
PerformanceScore_E
\n",
- "
0.002957
\n",
- "
1.000000
\n",
- "
0.690614
\n",
- "
\n",
- "
\n",
- "
EmpID
\n",
- "
0.047830
\n",
- "
0.690614
\n",
- "
1.000000
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " ManagerName_E PerformanceScore_E EmpID\n",
- "ManagerName_E 1.000000 0.002957 0.047830\n",
- "PerformanceScore_E 0.002957 1.000000 0.690614\n",
- "EmpID 0.047830 0.690614 1.000000"
- ]
- },
- "execution_count": 114,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Run correlation matrix\n",
- "encoded_df[['ManagerName_E', 'PerformanceScore_E', 'EmpID']].corr()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "feed7c4d",
- "metadata": {},
- "source": [
- "After running the correlation matrix, we can conclude that Managers play little role in Performance Score, and Employee is a bigger factor that contributes to performance score."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e2d6084d",
- "metadata": {},
- "source": [
- "## What is the overall diversity profile of the organization?\n",
- "\n",
- "From the question, I assume that the geographical diversity is requested, and we should display the columns significant to show any geographical properties of the people working for the organization.\n",
- "\n",
- "[Back To Top](#top)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 121,
- "id": "7f66f810",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABeAAAAGoCAYAAAAuBkUWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABfhklEQVR4nO3deZhcVZ3/8fdHdgg7CAJCEFBEhAjBcUVQXFAUERQQFxzH6LgwMMO4jxOdcRcVFOUXHcUVVBBFVNwQURA1YFgFEcENZN/CTvj+/ri3pdJ0dzpJV1dX1/v1PPX0veeee+733kqqTn3r1LmpKiRJkiRJkiRJ0sR6SK8DkCRJkiRJkiRpOjIBL0mSJEmSJElSF5iAlyRJkiRJkiSpC0zAS5IkSZIkSZLUBSbgJUmSJEmSJEnqAhPwkiRJkiRJkiR1gQl4aZpJMjNJJVlxgtp7VJLfJrktySET0eYSjrd5koVJVhijzsIkj+h2LJIkafz6vQ8iSZKWnu//0pKZgJe6IMmVSe5sE8U3JflukodPYPu7Jbm/bf+2JJcmedUytDM3yZeXUO3NwOlVtWZVHbVsET/ouI9M8o0k1ye5Jcn5Sf49yQpV9eeqmlFVi9q6pyf5l8792+1/nIhYRonv4CSL2uu7MMkVST6f5JHdOqYkSRPBPsiYx1wnyeeS/L2N/fdJ3tKxvZJsvRTtPaiPIklSL/j+v8Rj3tvGfnOSs5I8cXnbXcIxh76UGMopXJPklCTP7OZxNXWZgJe65/lVNQN4GHAN8IllaWSMb5GvattfC3gL8Jkk2y1TpGPbArhoWXYcKfYkWwG/Av4CPLaq1gZeDMwG1lyOOCfaL9vruzawB3AncE6S7XsbliRJS2QfZOTYPwbMAB5N8/7+AuDyZY5OkqSpxff/0WP/Whv7BsBPgW8sY2xLa532uDsCPwJOSnLwJB1bU4gJeKnLquou4ATgH29MSZ7X/qTq1iR/STK3Y9vQN6WvTvJn4LQltF9V9S3gps5jdLS3SZKTk9yY5A9JXtOWPwd4O7B/+43seSPsexqwO/DJts4jk6yd5ItJrkvypyTvTPKQtv7BSc5M8rEkNwJzh7cJvBs4q6r+vaqubs/h0qp6aVXd3HH+KyZ5L/DUjuN/sj1OJdm6PbeFHY87klRH/P+c5HftCIAfJNmiY1sleV2Sy9rtRyfJCNd3UVVdXlWvB37WeU5JntB+e35zkvOS7Nax7eAkf2xHB1yR5KCOba9p47otycVJdhrhOkmStFzsgzzILsBXq+qmqrq/qi6pqhPa/c9o65zXHm//JOu2o9Wua/sKpyTZrK0/Wh9l2yQ/as/50iQvGesaSpI00Xz/HzP2+4CvAJsm2bBt4/FJftl+rr86ySeTrNwR02M63tuvSfL2tvwhSd6a5PIkNyT5epL1Rjnu36vqyDa+D3bEv0mSE9tzuyIdU+60cc1vn7Nrkny0Y9tTOnIRf4lJ/SlvQuZnkjS6JKsD+wNndxTfDryC5lvd7YEfJVnQvokNeRrNCK37l9D+Q4C9gXWAC0aoclx7nE2Abdtj/bGqTk3yPmDrqnrZSG1X1dOTnA58uao+2x7vizSjxh4BrA/8ELga+L92t38CjgceCqw0QrN7AG8b65w6jv+OJE/uPP6w7VfRjGSjje0rtF8sJnkhzZv784HLgLe21+JJHU3sRfNhfC3gHOA7wKljhPRN4P1t+5sC3wVe3u7zDODEJNsCdwBHAbtU1aVJHgas1+73Ypo33RcC84GtgHvHcz0kSVoa9kEe5GzgvUnWBX5RVZd1HG/XNF/i71hVf2iPtz7weeAlwArA54BPAi8cqY+SZA2a0W3vAvYEdgB+mOSiqlqmkXySJC0t3//HjH1lmutwA80XCACLgMNoPp9vBnwfeD3w8SRrAj8GPkKTW1iJB750OITmc/3TgOtocgBHAweOEcI3gQ8Dj0pyKU0O4tvtPpsBP05yaVX9ADgSOLKqvpRkBs3zRpLN2xjn0HzRshYwYdMNqTtMwEvd860k99EkiK8Fnj20oapO76h3fpLjaF60v9VRPreqbh+j/U2S3Ezz5vhn4OVtsnfmUIU0c749Bdir/RZ8QZLP0iSNf7K0J5Tmxqj7A4+rqtuA25Ic0bY39OZ3VVUN/dTtvhGaWZ/mzXJCpZnDdVua8wV4LfD+qvpdu/19wNuTbFFVf2rrfKCqbgZuTvJTYBZjJ+Cvok2kAy8DvldV32vXf5RkPvBcmjfB+4Htk/y5Hek/dM7/Anyoqn7Trv9hWc9ZkqRR2AcZuQ/yJpoP2G8E5iX5E/Cmqvr+SMesqhuAEztieC/Nz9ZHsxdwZVV9vl0/N8mJwH4s40/pJUlaCr7/j/z+D/CSJHvRTHt7M7BvOxqeqjqno96VSf4fzbX5OM17+9+r6oh2+100U+pCk3N4Y1X9tY11LvDnJC8f45Suav+uRzMYcMOqek9b9scknwEOAH5AM1Bv6yQbVNX1PPCFykHAj6vquHb9hvahKcwpaKTueWFVrQOsQvNB72dJNgZI8k9Jftr+zOgW4HU0c5F1+ssS2r+qqtapqvWqalZVHT9CnU2AG9s3qiF/AjZdlhNqY1y5bWO09pYU9w00c9JNmCR7Av9Gc83vbIu3AI5sf5J1M3AjkGGx/r1j+Q46RtOPYtO2naH2XzzUfnuMpwAPazst+9M8r1enuQHOtu1+D8f5ZiVJ3WUfZARVdWdVva+qdqYZEPB14Buj/Vw8yepJ/l+an7vfCpwBrNMmA0ayBfBPw/oGBwEbj+P8JElaXr7/j+7r7bXZCLgQ2HloQ5ppbk5Jc5P2W4H38cC1Gevz+xY0c7oPvef/jmY0/UZjxDEU943t/psM6ze8vWP/VwOPBC5J8pv2C4QlxaQpygS81GXtHOLfpHkhHhqd/VXgZODh1dyE9Bia5PBiu07A4a8C1mt/NjVkc+Bvy3iM62m+hd2io6yzvfG0+WNg36U45pjtJXkU8AXgJVXV+cb7F+C1bQdh6LFaVZ21FMcebh/g5x3tf2lY+2tU1QcAquoHVfVMmi8bLgE+07HfVssRgyRJ42IfZHRVNfQBew1gy1Gq/QfwKOCfqmotYNe2fOh6DT/eX4CfDesbzKiqfx1vXJIkLS/f/0fXjiR/LTC3nSoW4NM0n9m3ad/v384D12asz+9/AfYc9r6/alX9bZT60OQUrgUubfe/Ytj+a1bVc9tYL6uqA2mm1vkgcEI73Z05hT5kAl7qsjT2Btal+UYUmp893VhVdyV5PPDSbhy7TUifBbw/yapJdqD5FvUrbZVrgJntHG7jaW8RzWix9yZZM81NTf8d+PJShPXfwJOSfLjj2/itk3w5yToj1L+GZq63B0myFs18ae+sql8M23wM8LYkj2nrrp1m/vWlkmSFJFsm+QSwG81NZKE55+cneXZbZ9UkuyXZLMlGSV7QvjneDSyk6fwAfBY4PMnO7b+NrdNxc1hJkiaKfZDFJfmvJLskWTnJqjS/nruZ5kPwUEydfY41gTtppqpbj6YP02l4/VOARyZ5eZKV2scuSR493hglSVpevv8vsc1LaKZ4eXNbtCZwK7Cw/eV65xfnpwAbJzk0ySptDP/UbjumjWsLgCQbttf9QdocwRtp+hJvq6r7gV8DtyZ5S5LV2rzC9kl2afd5WZIN27o3t00tormWeyR5SZIVk6yfZNayXg9NDhPwUvd8J8lCmhfy9wKv7LgB1+uB9yS5jeZGXV/vYhwHAjNpvok+CfjvqvpRu+0b7d8bkpw7zvbeRHMDlz8Cv6D5Jv1z4w2mqi4HntjGdFH787cTaW54ctsIuxwJ7JfkpiRHDdu2E83ItI+muUP6wvaaU1Un0XxLfHz7M7ILaW6INl5P7Hj+Tqe5sckuVXVB2/5faG4883aaG678BfhPmtfVh9CMmruK5qdlT6N5zqmqb9D8e/hqe77f4oF55SVJmgj2QUZWNDdVvb6N6ZnA86pqYbt9LvCF9mfgL6GZ+3W1tv7ZPPg+MYv1Udqf2z+LZu7Wq2imuvsgzVQAkiR1m+//4/dhYE6ShwKH03whcRvNL9e/NlSpfW9/Js0NWP8OXAbs3m4+kuZXBT9sr+vZNDeE7XRzkttpblb7XODFVfW5tu1FbbuzgCto+hufpbnhLMBzaHImC9tjHVBVd1XVn9u2/oMm37AA2HE5r4e6LFUT8QsTSZIkSZIkSZLUyRHwkiRJkiRJkiR1gQl4SZIkSZIkSZK6wAS8JEmSJEmSJEldYAJekiRJkiRJkqQuWLHXAWhybLDBBjVz5sxehyFJPXfOOedcX1Ub9joOaSqz3yBJDfsN0tjsM0jSA0brN5iAHxAzZ85k/vz5vQ5DknouyZ96HYM01dlvkKSG/QZpbPYZJOkBo/UbTMBLkiRpMfdddyPXffrLvQ5D+ocN//VlvQ5BkiRJWibOAS9JkiRJkiRJUheYgJckSepTSSrJlzrWV0xyXZJThtX7dpJfTn6EkiRJkjTYTMBLkiT1r9uB7ZOs1q4/E/hbZ4Uk6wA7Aesk2XJyw5MkSZKkweYc8JIkSf3t+8DzgBOAA4HjgKd2bN8X+A5wDXAA8P7JDlCSJE1Pv/vrDez8n1/sdRiSRnHOh1/R6xCEI+AlSZL63fHAAUlWBXYAfjVs+1BS/rh2eURJ5iSZn2T+DQtv7VqwkiRJkjRITMBLkiT1sao6H5hJk1z/Xue2JBsBWwO/qKrfA/cl2X6UduZV1eyqmr3+jLW6HLUkSZIkDQYT8JIkSf3vZOAjNKPcO+0PrAtckeRKmkT9AZMamSRJkiQNMBPwkiRJ/e9zwHuq6oJh5QcCz6mqmVU1E9gZE/CSJEmSNGlMwEuSJPW5qvprVR3ZWZZkJrA5cHZHvSuAW5P80+RGKEmSJEmDacVeByBJkqRlU1UzRig7HTi9Xd10hO07LandFTdcjw3/9WXLG54kSZIkDTwT8APid3+9gZ3/84u9DkNSj5zz4Vf0OgRJkiRJkqSB4xQ0kiRJkiRJkiR1gSPgJUmStJj7rruGa4/5eK/DmFYe+rpDex2CJEmSpB5wBLwkSZIkSZIkSV3gCHhJkqQ+l2R94Cft6sbAIuA6YE2aARc7V9WNSdYFzgV2q6o/9SRYSZIkSRogjoCXJEnqc1V1Q1XNqqpZwDHAx9r1rYBPAx9oq34AmGfyXZIkSZImhyPgJUmSprePAeckORR4CvCm3oYjSZIkSYPDBLwkSdI0VlX3JvlP4FTgWVV1z0j1kswB5gBstt66kxihJEmSJE1fTkEjSZI0/e0JXA1sP1qFqppXVbOravb6M9aYvMgkSZIkaRozAS9JkjSNJZkFPBN4AnBYkof1NiJJkiRJGhwm4CVJkqapJKG5CeuhVfVn4MPAR3oblSRJkiQNDhPwkiRJ09drgD9X1Y/a9U8B2yZ5Wg9jkiRJkqSB4U1YJUmSppGqmtuxPA+Y17G+CNh5SW2suOFGPPR1h3YjPEmSJEkaKI6AlyRJkiRJkiSpC0zAS5IkSZIk9YkkH0tyaMf6D5J8tmP9iCT/nuSUUfb/bJLt2uW3dz1gSRpwTkEjSZKkxdx77Z/529Fv6HUY096mbzi61yFIkvrTWcCLgY8neQiwAbBWx/YnAd8abeeq+peO1bcD7+tCjJKkliPgJUmSJEmS+seZNEl2gMcAFwK3JVk3ySrAo4HfAjOSnJDkkiRfSRKAJKcnmZ3kA8BqSRYk+Uq77WVJft2W/b8kK0z+6UnS9GICXpIkaRpIsnGS45NcnuTiJD9Nckf7AfrGJFe0yz/udaySJGnZVdVVwH1JNqdJxP8S+BXwRGA2cD5wD/A44FBgO+ARwJOHtfNW4M6qmlVVByV5NLA/8OSqmgUsAg6ajHOSpOnMKWgkSZL6XDui7STgC1V1QFs2C1izqn6e5FjglKo6oXdRSpKkCTQ0Cv5JwEeBTdvlW2imqAH4dVX9FSDJAmAm8Isx2nwGsDPwm3aw/GrAtcMrJZkDzAFYec31l/tEJGm6MwEvSZLU/3YH7q2qY4YKqmpB78KRJElddhZNwv2xNFPQ/AX4D+BW4HNtnbs76i9iyTmg0HyZ/7axKlXVPGAewBobb1lLHbkkDRinoJEkSep/2wPnLE8DSeYkmZ9k/g0L75ygsCRJUpecCewF3FhVi6rqRmAdmmlofrkU7dybZKV2+SfAfkkeCpBkvSRbTGDMkjSQTMBLkiSJqppXVbOravb6M1brdTiSJGlsFwAbAGcPK7ulqq5finbmAecn+UpVXQy8E/hhkvOBHwEPm6iAJWlQOQWNJElS/7sI2K/XQUiSpMlRVYuAtYaVHdyxfDpwesf6GzuWd+tYfgvwlo71rwFfm/iIJWlwOQJekiSp/50GrJLkNUMFSXZJ8rQexiRJkiRJA88EvCRJUp+rqgL2AZ6Z5PIkFwFzgat6GpgkSZIkDTinoJEkSZoGquoq4CWjbDt4adpa6aGbs+kbjp6IsCRJkiRpoDkCXpIkSZIkSZKkLjABL0mSJEmSJElSFzgFjSRJkhZz53V/4MJPvaDXYbD960/udQiSJEmStFwcAS9JkiRJkiRJUheYgJckSepzSU5P8uxhZYcm+VSSDZPcm+S1vYpPkiRJkgaVCXhJkqT+dxxwwLCyA9ryFwNnAwdOdlCSJEmSNOhMwEuSJPW/E4C9kqwCkGQmsAnwC5rE+38AmyXZtGcRSpIkSdIAMgEvSZLU56rqBuDXwHPaogOArwGbARtX1a+BrwP7j9ZGkjlJ5ieZf9PCe7odsiRJkiQNBBPwkiRJ00PnNDQHdKx/vS07njGmoamqeVU1u6pmrztj5a4GKkmSJEmDYsVeByBJkqQJ8S3go0l2AlarqnOTfBbYKMlBbZ1NkmxTVZf1LEpJkiRJGiCOgJckSZoGqmohcDrwOeC4JI8C1qiqTatqZlXNBN7Pg2/WKkmSJEnqEhPwkiRJ08dxwI48MN3MScO2n8gY09BIkiRJkiaWU9BIkiRNE1V1EpB2de4I288HtltSO6ttuDXbv/7kiQ1OkiRJkgaQI+AlSZIkSZIkSeoCE/CSJEmSJEmSJHWBU9BIkiRpMQuv/wM//8xevQ5jQj31Naf0OgRJkiRJA8gEvCRJkiRJkpbaozdbn/kffkWvw5CkKc0paCRJkvpcktOTPHtY2X8luTjJgiQ3JrmiXf5xr+KUJEmSpEFjAl6SJKn/HQccMKzsecBrq2oWcDLwn1U1q6r2mOzgJEmSJGlQDXwCPsnMJBcOK5ub5PB2+QlJftWOGPtdkrmjtPP4JGckuTTJJUk+m2T1JC9I8ta2zguTbNexz3uS+CFYkiQtrxOAvZKsAk3/BtgE+EUvg5IkSZKkQecc8Ev2BeAlVXVekhWARw2vkGQj4BvAAVX1yyQB9gXWrKqTaUadAbwQOAW4GKCq3jUJ8UuSpGmuqm5I8mvgOcC3aUbDf62qarxtJJkDzAHYaL3VuhKnJEmSJA2agR8BPw4PBa4GqKpFVXXxCHXeAHyhqn7Z1quqOqGqrklycJJPJnkS8ALgw+1o+q2SHJtkvySz27IFSS5IUgBtnVOTnJPk50m2bcuPTXJUkrOS/DHJfpNyJSRJ0lTWOQ3NAe36uFXVvKqaXVWz11lz5QkPTpIkSZIGkQn4JfsYcGmSk5K8NsmqI9TZHjhnrEaq6iwWn3/18o5t89uyWcCpwEfaTfOAN1XVzsDhwKc6mnwY8BRgL+ADIx0zyZwk85PMv++O28ZzrpIkqX99C3hGkp2A1arq3B7HI0mSJEkDzyloYLSfZhdAVb0nyVeAZwEvBQ4EdutGIEleAuwEPCvJDOBJwDeaGW0AWKWj+req6n7g4nYKnAefQNU8miQ+a2y85bh/gi5JkvpPVS1McjrwOZZy9LskSZIkqTtMwMMNwLrDytYDrhhaaUerfzrJZ4DrkqxfVTd01L8I2JlmztVlkuQxwLuBXatqUZKHADe3o+JHcnfn7st6XEmSNK0cB3yTB6aikSRJkiT10MAn4NvRYlcneUZV/STJejQ3MDsSIMnzgO+1NzHbBlgE3DysmU8Cv07y3ar6Vbvfy4AfD6t3G7Dm8BiSrA0cD7yiqq5r47o1yRVJXlxV32hv7LpDVZ03QacuSZKmmao6iRG+mK+qg5emnRkbbM1TX3PKRIUlSZIkSQPLOeAbrwDemWQBcBrw7o452l9OMwf8AuBLwEFVtahz56q6hmak2UeSXJrkd8BTgVuHHed44D+T/DbJVh3lLwS2AD4zdDPWtvwg4NVJzqMZZb/3RJysJEmSJEmSJKn7Bn4EPEBVXQzsPsq2cf2Eu6p+SZN0H+7Y9kFVnQls17Ht4I7lL4zQ5hU0o/GHlx88bH3GeGKUJEmSJEmSJE0eE/CSJElazC3XX8Z3P7dnr8OYkp73z9/vdQiSJE0Z91x9EX9+z2N7HYak5bT5uy7odQjTmlPQSJIkSZIkSZLUBSbgJUmSpokk+ySpJNu26zOTXNjruCRJkiRpUJmAlyRJmj4OBH5Bc3N4SZIkSVKPmYCXJEmaBpLMAJ4MvBoT8JIkSZI0JZiAlyRJmh5eCJxaVb8Hbkyy09LsnGROkvlJ5t+y8J6uBChJkiRJg8YEvCRJ0vRwIHB8u3x8uz5uVTWvqmZX1ey1Z6w84cFJkiRJ0iBasdcBSJIkafkkWR94OrB9kgJWAAr4VE8DkyRJkqQB5wh4SZKk/rcf8MWq2qKqZlbVw4ErgM16HJckSZIkDTQT8JIkSf3vQOCkYWUnAm8HHpXkrx2PF09+eJIkSZI0mJyCRpIkqc9V1W4jlB0FHLUs7a29wTY875+/v7xhSZIkSdLAcwS8JEmSJEmSJEldYAJekiRJkiRJkqQucAoaSZIkLebGGy7juGOf3esw+saBB/+g1yFIkiRJmqIcAS9JkiRJkiRJUheYgJckSepDST6W5NCO9R8k+WzH+hFJ/j3JikmuT/L+ngQqSZIkSQPMBLwkSVJ/Ogt4EkCShwAbAI/p2P4k4EzgWcClwEuSZLKDlCRJkqRBZgJekiSpP51Jm4CnSbxfCNyWZN0kqwCPBn4LHAgcCfwZeEIvApUkSZKkQeVNWCVJkvpQVV2V5L4km9Mk4n8JbAo8EbgFOB9YAXgG8FpgHZpk/C9Hai/JHGAOwAbrr9rt8CVJkiRpIDgCXpIkqX8NjYIfSsD/smP9LGAv4KdVdQdwIrBPkhVGaqiq5lXV7KqaveaaK09K8JIkSZI03ZmAlyRJ6l9D88A/lmYKmrNpRsAPzf9+ILBHkiuBc4D1gd17EqkkSZIkDSAT8JIkSf3rTJpR7jdW1aKqupFmqpknAucBTwE2r6qZVTUTeANNUl6SpHFLsijJgiTnJTk3ydBNwGcmuXAZ2zw9yeyJjXSx9s9LctywskOS/C7JV0aoPzvJUd2Kp+M4Ryb5W3sD9W4d43VJXtGt9iVJS8c54CVJkvrXBcAGwFeHlc0Ang6cVlV3d2z7NvChJKsMK5ckaSx3VtUsgCTPBt4PPK2nEbWSrFBVi4aVPZpmwOGuSdaoqtvbTa8H9qyqK4bVX7Gq5gPzuxzrQ4B9gL8AuwKnd+EYK1bVMRPdriRp2ZmAlyRJ6lNtwmGtYWUHd6weO2zbjcCGS2p3vfW34cCDfzABEUqSpqG1gJuGFyaZCXwJWKMtemNVndVuezPwcuB+4PtV9daO/R4CfB74S1W9c1ibzwA+QpO7+A3wr1V1dzu12ueAZwGfBI4fFs5L21geDbwAOC7JMcAjgJOTfA5YG9gEmAlcn2QecHhV7ZVkBvAJYDZQwLur6sQknwZ2AVYDTqiq/27jvBL4AvB8YCXgxVV1yQjXbneaKeO+RvOLtNPb/ecCWwIPAx4J/DvwBGBP4G/A86vq3iQ7Ax+l+aL9euDgqro6yek009I9uT2/NYGFVfWRJFsDx9C8/y8CXgxcQ/Ol/LptvO+sqm+3z+H3gV/QTGf3N2DvqrpzhHORJI2TU9BIkiRJkqSxrNZOQXMJ8Fngf0aocy3wzKraCdgfOAogyZ7AC4F/qqodgQ917LMi8BXg9yMk31el+SJ5/6p6bFv3Xzuq3FVVT6mq4cl32uN/DTiOduq1qnodcBWwe1V9rK23M02C+aXD9v8v4JaqemxV7QCc1pa/o6pmAzsAT0uyQ8c+17fn/mng8BFioo3lOOAkYK8kK3Vs2wp4HrA38GWam6g/FrgTeF5b9xPAflW1M80XEO/t2H+dqnpaVR0x7JhfAY5ur/2TgKuBu4B92nh3B45Ikrb+Nm39xwA3A/sOP4kkc5LMTzL/xtsXDd8sSRrGBLwkSZIkSRrLnVU1q6q2BZ4DfLEjYTtkJeAzSS4AvgFs15bvAXy+qu6Af/waa8j/Ay6sqvfyYI8Crqiq37frX6CZtmXI10YKNMkuwHVV9SfgJ8BOSdYd5bxOHmV09x7A0UMrVTU04v8lSc4Ffgs8puMcAb7Z/j2HZlT98LhWBp4LfKuqbgV+RTOCf8j3q+pemqnkVgBObcsvaNt7FLA98KMkC4B3Apt17P+g69GOhN+0qk5qz+Ou9nkI8L4k5wM/BjYFNmp3u6KqFox1LlU1r6pmV9Xs9dZYYfhmSdIwTkEjSZKkxVx3w2X8vy89u9dh9LXXvtwpfCRNT1X1yyQb8OApzQ6jmdpkR5rBfne15aGZxmUkZwG7Jzmiqu4atm14gn+420cpPxDYtp0WBpopc/alGbk/3jYeFHOSLWlGtu9SVTclORZYtaPK0L1VFjFyruU5NNPeXNB+d7E6cAfw3c79q+r+JPdW1dDx72/bC3BRVT1xlJhHOpfRruFBNM/fzu3UNld2nEvnPWIW0Uy3I0laDo6AlyRJkiRJ45JkW5oR2jcM27Q2cHVV3U8z3/vQ0OgfAv+cZPV2//U69vk/4HvAN5IMT1pfAsxs5zCnbfNnS4jtITRznO9QVTOraibNlC4Hjv8M/xHzGzvaXZcmkX87cEuSjWjmZ18aBwL/0hHXlsCzhq7LOFwKbJjkiW1MKyV5zFg7tCPt/5rkhe0+q7THWxu4tk2+7w5ssZTnIklaCibgJUmS+lySjZMcn+TyJBcn+V6SR7bbDktyV5K1ex2nJKlvDc0Bv4BmqpNXtjcC7/Qp4JVJzqa5kejtAFV1KnAyML/df7H50avqo8C5wJfaBPpQ+V3Aq2iS8xfQjAQ/Zglx7gr8rar+1lF2BrBdkoctxfn+L7BukguTnEczb/x5NFPPXEQz//qZ422sTXo/mwdGu1NVt9Pc7PT542mjqu4B9gM+2Ma0gGZO9yV5OXBIO93MWcDGNPPCz04yn2Y0/Eg3jJUkTZA88KsmTWdrbLxlbfvyd/c6DEk9cs6HX9HrEKaMJOe0N8+SpoV2Dt6zgC9U1TFt2Sxgzar6eZJf0/yc/P+q6tjxtLnFlmvX29/zhC5FPBicgkaaHuw3SGPbYdPV6pTXbr3kipKmtM3fdUGvQ5gWRus3OAJekiSpv+0O3DuUfAeoqgVt8n0rYAbNjdqW9uf3kiRJkqTlZAJekiSpv20PnDPKtgOB44CfA49K8tDRGkkyJ8n8JPMX3nZPF8KUJEmSpMFjAl6SJGn6OgA4vr0h3jdpbkw3oqqaV1Wzq2r2jDVXnrQAJUmSJGk6G36XcUmSJPWXi2huyraYJDsA2wA/aqaJZ2Xgj8DRkxqdJEmSJA0wR8BLkiT1t9OAVZK8ZqggyS7AkcDcqprZPjYBNk2yRa8ClSRJkqRBYwJekiSpj1VVAfsAz0xyeZKLgLnAbsBJw6qfRDMtjSRJkiRpEjgFjSRJUp+rqquAl4yj3r+Pp70N19+G1778B8sdlyRJkiQNOkfAS5IkSZIkSZLUBSbgJUmSJEmSJEnqAqegkSRJ0mL+fuNlfPD4Z/c6DC2ltxzgtEGSJEnSVOMIeEmSJEmSJEmSusAEvCRJUh9LslmSbye5LMnlSY5MsnKS3ZKcMqzusUn261WskiRJkjRonIJmQDx6s/WZ/+FX9DoMSZI0gZIE+Cbw6araO8kKwDzgvcB3exqcJEmSJMkEvCRJUh97OnBXVX0eoKoWJTkMuAL4aU8jkyRJkiSZgJckSepjjwHO6SyoqluT/BnYGnhqkgUdmzcHFpuWZkiSOcAcgHU2WLUrwUqSJEnSoDEBL0mS1L8C1BjlP6+qvf5RmBw7WkNVNY9m+ho2e8TaI7UpSZIkSVpK3oRVkiSpf10EzO4sSLIW8HDg8p5EJEmSJEn6BxPwkiRJ/esnwOpJXgHQ3oT1COBY4I4exiVJkiRJwiloJEmS+lZVVZJ9gE8l+S+awRXfA94OPLGnwUmSpGlv5Yc9hs3fNb/XYUjSlGYCXpIkqY9V1V+A54+w6fT20Vn34PG0ufF62/CWA36wvKFJkiRJ0sBzChpJkiRJkiRJkrrABLwkSZIkSZIkSV3gFDSSJElazF9uuox/O/E5vQ5Dy+HIfU/tdQiSJEmScAS8JEnStJJkYft3ZpJK8qaObZ9McnDPgpMkSZKkAWMCXpIkafq6Fvi3JCv3OhBJkiRJGkQm4CVJkqav64CfAK/sdSCSJEmSNIhMwEuSJE1vHwD+I8kKvQ5EkiRJkgaNCXhJkqRprKquAH4NvHSseknmJJmfZP6dt94zOcFJkiRJ0jRnAl6SJGn6ex/wFsbo+1XVvKqaXVWzV1vLKeMlSZIkaSKYgJckSZrmquoS4GJgr17HIkmSJEmDxAS8JEnSYHgvsFmvg5AkSZKkQbJirwOQJEnSxKmqGe3fK4HtO8rPw8EXkiRpAl1y7SU8+RNP7nUYkpbRmW86s9chDAQT8JIkSVrMw9fdhiP3PbXXYUiSJElS33MUlCRJkiRJkiRJXeAIeEmSJC3mspuvZM9vv7LXYahHvr/3F3odgiRJkjRtOAJekiRJkiRJkqQuMAEvSZLUx5Ksn2RB+/h7kr91rFeSIzrqHp5kbg/DlSRJkqSB4hQ0A+Keqy/iz+95bK/DkKTFbP6uC3odgtT3quoGYBZAm1xfWFUfadfvAl6U5P1VdX3PgpQkSZKkAeUIeEmSpOnrPmAecFivA5EkSZKkQWQCXpIkaXo7Gjgoydq9DkSSJEmSBo0JeEmSpGmsqm4FvggcMla9JHOSzE8y/55b75qc4CRJkiRpmjMBL0mSNP19HHg1sMZoFapqXlXNrqrZK6+16qQFJkmSJEnTmQl4SZKkaa6qbgS+TpOElyRJkiRNEhPwkiRJg+EIYINeByFJkiRJg2TFXgcgSZKkiVFVc4etz+hYvgZYfbJjkiRJkqRBZgJekiRJi9lmnZl8f+8v9DoMSZIkSep7TkEjSZIkSZIkSVIXOAJekiRJi7ns5qt47klzex2GpqDv7TO31yFIkiRJfcUR8JIkSZIkSZIkdYEJeEmSpD6WpJIc0bF+eJK57fLcJIcPq39lkg0mOUxJkiRJGkgm4CVJkvrb3cCLTKpLkiRJ0tRjAl6SJKm/3QfMAw7rdSCSJEmSpMV5E1ZJkqT+dzRwfpIPjbDtsCQv61jfZJJikiSpq5KsD/ykXd0YWARc164/vqru6UlgkiR1MAEvSZLU56rq1iRfBA4B7hy2+WNV9ZGhlSRXjtRGkjnAHIBVN1y7S5FKkjRxquoGYBY09z0BFna+53VTkhWr6r6p0nY345EkLR+noJEkSZoePg68GlhjWXauqnlVNbuqZq+81uoTGpgkSZPkIUnOAUiyY3uj8s3b9cuTrJ5kiyQ/SXJ++3fz4Y0kWS/Jt9o6ZyfZoS2fm2Rekh8CXxy2z25Jfpbk60l+n+QDSQ5K8uskFyTZqq034vGTHJvko0l+CnwwyVZJTk1yTpKfJ9l2hDgXiyfJzLbuue3jSR1139zGcV6SD7RlIx4jyYuTXNjWPWNCnhlJGmCOgJckSZoGqurGJF+nScJ/rtfxSJLUA/cDqyZZC3gqMB94apJfANdW1R1JPgl8saq+kOSfgaOAFw5r593Ab6vqhUmeTpNsn9Vu2xl4SlUN/8UZwI7Ao4EbgT8Cn62qxyf5N+BNwKHAWMd/JLBHVS1K8hPgdVV1WZJ/Aj4FPH2EY/4jniSrA8+sqruSbAMcB8xOsmd7jH9qr8F67b7zRjnGu4BnV9Xfkqwz/ICdv5pbed2VRwhJktTJBLwkSdL0cQTwxl4HIUlSD50FPBnYFXgf8BwgwM/b7U8EXtQufwkY6f4pTwH2Baiq05Ksn2RofraTR0m+A/ymqq6GZsQ98MO2/AJg93Ec/xtt8n0G8CTgG0mGtq0yyjE741kJ+GSSWTTz4T+yLd8D+HxV3dGe041LOMaZwLHtF/vfHH7AqppHk7xnxuYzapS4JEktE/CSJEl9rKpmdCxfA6zesT53hPozJyUwSZJ64+c0o9+3AL4NvAUo4JRR6o+UQM4IZUP1bh/j2Hd3LN/fsX4/o+dfOo8/1PZDgJuratYYxxq+D8BhwDU0I/EfAtzVlocHn+eox6iq17Uj4p8HLEgyq51vX5K0DEzAS5IkaTHbrLMJ39tnbq/DkCRpWZwB/C9wRlXdn+RG4LnA29rtZwEH0Iw+Pwj4xShtHAT8T5LdgOvbG55PRHxLPH57rCuSvLiqvpHmwDtU1XlLaHtt4K/teb8SWKEt/yHwriRfHZqCph0FP+IxkmxVVb8CfpXk+cDDARPwkrSMvAmrJEmSJEmaFqrqynZx6Oahv6AZ6X1Tu34I8Kok5wMvB/5thGbm0sydfj7wAeCVExjieI4PTXL+1UnOAy4C9h5H258CXpnkbJrpZ24HqKpTgZOB+UkWAIcv4Rgfbm/YeiHNdVxS4l+SNIZUOV3XINhh09XqlNdu3eswJGkxm7/rgkk/ZpJzqmr2pB9Y6iNrb/3wesqH/qPXYagPfPdFh/Y6BKmr7DdIY5ux+Yza8T937HUYkpbRmW86s9chTCuj9RscAS9JkiRJkiRJUheYgJckSZpmkixKsiDJhUm+k2Sdtnxm+3NySZIkSdIkMAEvSZI0/dxZVbOqanvgRuANvQ5IkiRJkgaRCXhJkqTp7ZfApr0OQpIkSZIGkQl4SZKkaSrJCsAzgJN7HYskSZIkDSIT8JIkSdPPakkWADcA6wE/WtIOSeYkmZ9k/j233N7t+CRJkiRpIJiAlyRJmn7urKpZwBbAyoxjDviqmldVs6tq9sprr9Ht+CRJkiRpIJiAlyRJmqaq6hbgEODwJCv1Oh5JkiRJGjQm4CVJkqaxqvotcB5wQK9jkSRJkqRBs2KvA5AkSdLEqqoZw9af37G6/SSHI0mSJEkDywS8JEmSFrPNOhvx3Rcd2uswJEmSJKnvOQWNJEmSJEmSJEld4Ah4SZIkLeaym67neSd+ttdhaEB8d99/6XUIkiRJUtcs8wj4JCtPZCCSJEl6gH0tSZqefH2XJGmwjCsBn+T0JDM71h8P/KZbQUmSJA2SiehrJVmUZEGSC5N8I8nqbfmKSa5P8v6JjVqStCR+lpYkSeOdgub9wKlJjgI2BfYEXtW1qCRJkgbLRPS17qyqWQBJvgK8Dvgo8CzgUuAlSd5eVTVhUUuSlsTP0pIkDbhxJeCr6gdJXgf8CLgeeFxV/b2rkUmSJA2ILvS1fg7s0C4fCBwJ/CvwBOCXyxOrJGn8/CwtSZLGOwXNfwGfAHYF5gKnJ3leF+OSJEkaGBPZ10qyIs0IywuSrAY8AzgFOI4mGS9JmiR+lpYkSeOdgmYD4PFVdSfwyySnAp8Fvtu1yCRJkgbHRPS1VkuyoF3+OfB/wN7AT6vqjiQnAv+V5LCqWjR85yRzgDkAq26w3rKfiSSpk5+lNa1t+9BtOfNNZ/Y6DEma0sY1Ar6q/g0gyaPa9T9V1TO7GZgkSdKgmKC+1p1VNat9vKmq7qEZ8b5HkiuBc4D1gd1HiWFeVc2uqtkrr7XmMp+LJOkBfpaWJEnjnYLm+cAC4NR2fVaSk7sYlyRJ0sDoRl8ryVrAU4DNq2pmVc0E3oDT0EjSpPGztCRJGlcCnmauuscDNwNU1QJgy7F2SLIoyYKOx1vb8tOTzG6Xv5dknSW0854ke7TLVybZYIQ6c5McPs5zIcnBSe5PskNH2YVJZo63jRHafEXbxkVJLh6KZ1j8hyZZvWOfJZ6/JEkaCHNZyr7WOLwIOK2q7u4o+zbwgiSrLGfbkqTxmcvEv75LkqQ+Mt454O+rqluSdJbVEva5s6pmjVWhqp67pANX1buWHN4y+SvwDmD/5W0oyZ7AocCzquqqJKsCL4cHxX8o8GXgjnbbEs9fkiQNhGXpay2mqmYMWz8WOHZY2Y3AhssWoiRpGSz367skSepv403AX5jkpcAKSbYBDgHOWt6Dt/ORzq6q69u7wx8E/AW4Hjinqj6S5FjglKo6od3tP5MMzV360qr6w7A2twKOpvlweQfwmqq6ZITDnwLsmuRRVXXpsDYOBN4OBPhuVb2lLV8IHAnsBdwJ7F1V1wBvAw6vqqsAquou4DPtPse2x9qkffw0yfVVtfvQ+QP7Aa9rD782cGW7/VnAu4FVgMuBV1XVwna/LwDPB1YCXjzKOUqSpP7Qlb7Wstpm3Q347r7/0qvDS9J0MqVe3yVJ0uQb7xQ0bwIeA9wNHAfcSjOaeyyrDZuCZtSR5u2UNPsCj6P5ufTsMdq9taoeD3wS+PgI2+cBb6qqnYHDgU+N0s79wIdoEu2dsWwCfBB4OjAL2CXJC9vNawBnV9WOwBnAa9ry7WlubDaqqjoKuArYvap2H7btmPbXArvQjMz/aDvVzjuBPapqJ2A+8O8du13fln+6Pc8HSTInyfwk82+8fdFY4UmSpN5alr6WJGnq8/VdkqQBN64R8FV1B810Le9YiraXOAVNh6cA366qOwGSfGeMusd1/P1Y54YkM4AnAd/o+InfWHOcfhV4R5LOOfh2AU6vquvaNr8C7Ap8C7iHZjQ7NAn3ib57/ZE0c7V+J8lewHbAme25rAz8sqPuNzvieNFIjVXVPJovJNhh09X8maMkSVPUMva1uuYPN93IXid8pddhaMCcst9BvQ5BmnBT7fVdkiRNvjET8G0ifNTEbVW9YILiyJKrPHDYUZahGdF/83gT/1V1X5IjgLeMM5Z7q2romIt44PpdBOwMnDae444kycHAFsAbO+L4UVUdOMouQzdU64xDkiT1kUnsa0mSJpGv75IkaciSpqD5CHAEcAXNnOefaR8LgQsnMI5fAM9Psmo7iv15Y9Tdv+Nv54hwqupW4IokLwZIY8clHPtYYA8euCHZr4CnJdkgyQrAgcDPltDG+4EPJdm4Pe4qSQ4Zod5twJrDC5MMTZfzsqq6vy0+G3hykq3bOqsneeQS4pAkSf1luftaSTZOcnySy5NcnOR7SR6Z5DFJTkvy+ySXJfmvDLsLoCSpaybrs7QkSZrixhw5XVU/A0jyP1W1a8em7yQ5Ywltr5ZkQcf6qVX11lGO85skJwPnAX+ime/8llHaXSXJr2i+PBhpdPhBwKeTvJPmBqXHt+2OqKruSXIUzfQvVNXVSd4G/JRmFPr3qurbo58mVNX3kmwE/Lj9YFvA50aoOg/4fpKrh80D/0ZgPZobtALMr6p/aUfFH5dkaBqddwK/HysWSZLUP5azr0Xb7zgJ+EJVHdCWzQI2ohlk8K9V9cMkqwMnAq+nuVm9JKmLlvf1XZIkTR95YEaVMSolvwOeV1V/bNe3pElMP3rCAklmVNXC9gPiGcCcqjp3otofdDtsulqd8tqtex2GJC1m83ddMOnHTHJOVY11s29p0i1rXyvJ04G5w5I7JHk18LSqekVH2VY097l5+JLiWWerR9RTPvg/y3Am0rJzDnhNRcvbb5iMz9JSL82ePbvmz5/f6zAkaUoYrd8w3rnDDwNOT/LHdn0m8NoJim3IvCTbAavSjOIy+S5JkgbFsva1tqe5IftwjxleXlWXJ5mRZK122j5JUvdNxmdpqWduu/RSfrbr03odhiRNiKedsaRZyJfNuBLwVXVqkm2AbduiS6rq7rH2WVpV9dKJbE+SJKlfdKGvNTQl3oiHG3GHZA4wB2C1DdZfjkNLkoZMxmdpSZI0tY13BDzAzjTf1q8I7JiEqvpiV6KSJEkaPMvS17oI2G+U8uHT0jwCWFhVt43UUFXNo7lfDets9Yglz1EoSRovP0tLkjTAxpWAT/IlYCtgAbCoLS7AToMkSdJyWo6+1mnA+5K8pqo+07a1C3AZ8PYke1TVj5OsBhwFfKgb8UuSRuZnaUmSNN4R8LOB7Wo8d2yVJEnS0lqmvlZVVZJ9gI8neStwF3AlcCiwN/CJJEcDKwBfAj45kUFLkpbIz9KSJA248SbgLwQ2Bq7uYiySJEmDapn7WlV1FfCSUTbvthwxSZKWn5+lJUkacONNwG8AXJzk18A/bhhTVS/oSlSSJEmDZUr1tbZedz1O2e+gXhxakqabKfX6LkmSJt94E/BzuxmEJEnSgJvb6wAkSV0xt9cBSJKk3hpXAr6qftbtQCRJkgbVVOtr/eGmm3n+CSf1OgwJgO/st0+vQ5CW2VR7fZckSZNvzAR8ktto7tD+oE009/1aqytRSZIkDQD7WpI0Pfn6LkmShoyZgK+qNScrEEmSpEEzUX2tJAV8tKr+o10/HJgBnAW8G3hSVVWSFYBzgNdX1VkTcWxJ0oP5WVqSJA15SK8DkCRJ0nK7G3hRkg06C6vqh8CfgFe3RW8CfmPyXZIkSZImhwl4SZKk/ncfMA84bIRthwFvS/IY4I3AWyYzMEmSJEkaZCbgJUmSpoejgYOSrN1ZWFVXAx8Hfgn8b1Xd2IPYJEmSJGkgmYCXJEmaBqrqVuCLwCEjbD4aWKGqjh1t/yRzksxPMv+eW2/tUpSSJEmSNFhMwEuSJE0fH6eZ732NzsKquh+osXasqnlVNbuqZq+81lrdi1CSJEmSBogJeEmSpGminV7m6zxw01VJkiRJUg+ZgJckSZpejgA26HUQkiRJkiRYsdcBSJIkaflU1YyO5WuA1ceqI0mSJEmaHCbgJUmStJit112H7+y3T6/DkCRJkqS+5xQ0kiRJkiRJkiR1gSPgJUmStJg/3HQre5/wg16HIS2Tb+/37F6HIEmTJsk+wDeBR1fVJWPU+x7w0qq6ebJikyQ1HAEvSZIkSZLUnw4EfgEcMFalqnquyXdJ6g0T8JIkSX0uycwkFw4rm5vk9iQLklyc5M52eUGS/XoVqyRJmhhJZgBPBl5Nm4BP8rAkZ7Tv9xcmeWpbfmWSDdrlbyU5J8lFSeZ0tLcwyXuTnJfk7CQb9eC0JGnaMQEvSZI0ff13Vc0CngtcXlWz2scJPY5LkiQtvxcCp1bV74Ebk+wEvBT4Qfv+vyOwYIT9/rmqdgZmA4ckWb8tXwM4u6p2BM4AXjPSQZPMSTI/yfxb7r13Is9HkqYlE/CSJEmSJEn950Dg+Hb5+Hb9N8CrkswFHltVt42w3yFJzgPOBh4ObNOW3wOc0i6fA8wc6aBVNa+qZlfV7LVXWmkizkOSpjVvwipJkiRJktRH2lHrTwe2T1LACkABbwZ2BZ4HfCnJh6vqix377QbsATyxqu5Icjqwarv53qqqdnkR5owkaUI4Al6SJKn/1VKWP0jnz8nvufWWCQpLkiR1yX7AF6tqi6qaWVUPB66gSb5fW1WfAf4P2GnYfmsDN7XJ922BJ0xq1JI0gPw2U5Ikqf/dAKw7rGw9mg/i41JV84B5AOts9chxJ+4lSVJPHAh8YFjZicCxwO1J7gUWAq8YVudU4HVJzgcupZmGRpLURSbgJUmS+lxVLUxydZJnVNVPkqwHPAc4stexSZKkiVdVu41QdhRw1Cj1Z3as7jlKnRkdyycA3rRdkiaACXhJkqTp4RXA0UmOaNffXVWX9zIgSZIkSRp0JuAlSZKmgaq6GNh9lG1XAttPakCSJEmSJBPwkiRJWtzW667Ft/d7dq/DkCRJkqS+95BeByBJkiRJkiRJ0nTkCHhJkiQt5vKbFvKiE8/qdRjStPLNfZ/U6xAkSZLUA46AlyRJkiRJkiSpC0zAS5Ik9bEkGyX5apI/JjknyS+T7NOx/cgkf0tiv0+SJEmSJpkfxCRJkvpUkgDfAs6oqkdU1c7AAcBm7faHAPsAfwF27VWckiRJkjSoTMBLkiT1r6cD91TVMUMFVfWnqvpEu7o7cCHwaeDAHsQnSZIkSQPNBLwkSVL/egxw7hjbDwSOA04C9kqy0qREJUmSJEkCTMBLkiRNG0mOTnJekt8kWRl4LvCtqroV+BXwrDH2nZNkfpL5d9968yRFLEmSJEnT24q9DkCSJEnL7CJg36GVqnpDkg2A+cBzgLWBC5qp4lkduAP47kgNVdU8YB7AulttW90NW5IkSZIGgyPgJUmS+tdpwKpJ/rWjbPX274HAv1TVzKqaCWwJPCvJ6kiSJEmSJoUj4AfEyg97DJu/a36vw5AkSROoqirJC4GPJXkzcB1wO/DfwMeA13bUvT3JL4DnA1/rQbiSJEmSNHBMwEuSJPWxqroaOGCETV8Yoe6Luh+RJEmSJGmICXhJkiQtZqt1Z/DNfZ/U6zAkSZIkqe85B7wkSZIkSZIkSV3gCHhJkiQt5o833cVLTryk12FI097X99221yFIkiSpyxwBL0mSJEmSJElSFzgCXpIkaZpIsgi4oKPohcBM4PCq2qsXMUmSpOlrzUc9iqed8bNehyFJU5oJeEmSpOnjzqqa1VmQZGZvQpEkSZIkOQWNJEmSJEmSJEld4Ah4SZKk6WO1JAva5Suqap9eBiNJkiRJg84EvCRJ0vTxoCloxivJHGAOwOobbDKRMUmSJEnSwHIKGkmSJFFV86pqdlXNXmWtdXsdjiRJkiRNCybgJUmSJEmSJEnqAhPwkiRJ098zkvy14/HEXgckSZIkSYPAOeAlSZKmiaqaMULZ6cBqkx+NJEmSJMkEvCRJkhbziHVX5ev7btvrMCRJkiSp7zkFjSRJkiRJkiRJXeAIeEmSJC3mqpvv5b9PuqrXYUgD5d37bNLrECRJktQFJuAlSZIkSZK01K796y188j++0+swpCnrjUc8v9chaApwChpJkqQ+lqSSHNGxfniSuR3rr0hyYZKLklyc5PCeBCpJkiRJA8gEvCRJUn+7G3hRkg2Gb0iyJ3Ao8KyqegywE3DL5IYnSZIkSYPLBLwkSVJ/uw+YBxw2wra3AYdX1VUAVXVXVX1mMoOTJEmSpEFmAl6SJKn/HQ0clGTtYeXbA+eMp4Ekc5LMTzL/jltvmPAAJUmSJGkQmYCXJEnqc1V1K/BF4JDlaGNeVc2uqtmrr7X+xAUnSZIkSQNsxV4HoMlxybWX8ORPPLnXYUjShDjzTWf2OgRpKvo4cC7w+Y6yi4CdgdN6EZAkSZIkDTpHwEuSJE0DVXUj8HXg1R3F7wc+lGRjgCSrJFnmUfKSJEmSpKVjAl6SJGn6OALYYGilqr5HMz/8j5NcRDMfvL+AlCRJkqRJ4gcwSZKkPlZVMzqWrwFWH7b98yw+LY0kSZIkaZKYgJckSdJiNllnJd69zya9DkOSJEmS+p5T0EiSJEmSJEmS1AWOgJckSdJibrj5Pr7wzet6HYakcXjlizbsdQiSJEkagyPgJUmSJEmSJEnqAhPwkiRJ00CShR3Lz01yWZLTkvxrR/k/JTk/ib+ClCRJkqRJ4IcvSZKkaSTJM4BPAM8CFgK/THICcAPwSeD1VXVfD0OUJEmSpIFhAl6SJGmaSPJU4DPAc6vq8rbsI8CHgN8A51fVL3oYoiRJkiQNFBPwkiRJ08MqwLeB3arqko7yY4BXArsBs0fbOckcYA7A+hts1r0oJUmSJGmAOAe8JEnS9HAvcBbw6s7Cqrof+H/A96vqhtF2rqp5VTW7qmavufb63Y1UkiRJkgaECXhJkqTp4X7gJcAuSd4+wrb7Jz8kSZIkSRpsTkEjSZI0TVTVHUn2An6e5Jqq+r9exyRJkiRJg8wR8JIkSdNIVd0IPAd4Z5K9ex2PJGnpJdknSSXZtovHmJ3kqC62v1uSU5Zyn7lJDm+X35Nkj+5EN+54Htc+D88eVr5wGdu7MskGy7HviR3r+yU5dgn7zEry3I71FyR567IcX5K07EzAS5IkTQNVNaNj+S9VtWVVfbtdP7aq3ti76CRJS+lA4BfAAd1oPMmKVTW/qg7pRvsToareVVU/noxjJVlhlE1Dz8OBkxHHOMxO8pilqD8L+EcCvqpOrqoPTHhUkqQxOQWNJEmSFrP+Oivyyhdt2OswJGkgJZkBPBnYHTgZmNuW7wa8G7iGJrH6TeAC4N+A1YAXVtXlSTYEjgE2b5s8tKrOTDIX2ASYCVyfZB5weFXt1R7zE8BsoIB3V9WJST4N7NK2f0JV/Xcby5XAF4DnAysBL66qS8Y4p7ltPI9o/368qo5qt70DeAXwF+A64Jy2/FjglKo6Icm72mOtRnPD8ddWVSU5HfhVe63WAV5dVT8fduwAHwL2bM/tf6vqa+31/G/g6vZ6bjfCfvsBz6SZ2m3VqrprWJ0ZwLeBddvr8M6q+naSNYCvA5sBKwD/U1Vf69hvNeAk4ETguJHaGOVSfgR4O3DQsDgeD3y8vT53Aq8CrgDeA6yW5CnA+9vts4F3AOcBj6iq+5OsDlzKA8/P0cCGwB3Aa8Z6biVJS+YIeEmSJEmSpo4XAqdW1e+BG5Ps1LFtR5qE+2OBlwOPrKrHA58F3tTWORL4WFXtAuzbbhuyM7B3Vb102DH/C7ilqh5bVTsAp7Xl76iq2cAOwNOS7NCxz/VVtRPwaeDwcZzXtsCzgccD/51kpSQ704zyfxzwIppk/0g+WVW7VNX2NEnkvTq2rdheg0NpEurDvYgmwb4jsAfw4SQPa7c9vj3H7UbY78nAFVV1OXA6HSPJO9wF7NNeh92BI9rE/XOAq6pqxzbmUzv2mQF8B/hqVX1mjDZG8nVgpyRbDyu/BNi1qh4HvAt4X1Xd0y5/rapmdX4BUFW30CTgn9YWPR/4QVXdC8wD3lRVO9M8r58aHkSSOUnmJ5m/8I5bRglVkjTEEfCSJElazC033cf3v3Z9r8OQNAH23H+ZpptWbx1IM5oZ4Ph2/dx2/TdVdTVAksuBH7blF9Akb6FJMm/XkcNdK8ma7fLJVXXnCMfcg47pbqrqpnbxJUnm0OQOHkYzSvz8dts327/n0CS5l+S7VXU3cHeSa4GNgKcCJ1XVHe05nTzKvrsneTOwOrAecBFNEnt4HDNH2PcpwHFVtQi4JsnPaBL9twK/rqorRjnmgTTXn/bvyzuONSTA+5LsCtwPbNqe1wXAR5J8kGYUf+eo/G8DH6qqryyhjb+PENMi4MPA24Dvd5SvDXwhyTY0o/xXGuWcOn0N2B/4Kc1z/6l2RP+TgG90/PtZZfiOVTWPJlHP5htvU+M4liQNNBPwkiRJkiRNAUnWB54ObJ+kaKYvqTb5DHB3R/X7O9bv54HP9w8Bnjg80d4mVG8f7dA0idvO+lvSjIDepapuaqeEWbWjytCxFzG+3EJn7J37jJnATbIqzSjs2VX1l3Y6m6WJY7TR5DDK9WjnhN8XeEE7RU6A9ZOsWVW3dVQ9iGaqlp2r6t52ap5Vq+r37ej+5wLvT/LDqnpPu8+ZwJ5JvlpVNVobY8T8JZoE/EUdZf8D/LSq9kkyk2bE/pKc3Ma2Hs0vI04D1gBurqpZ49hfkjROTkEjSZI0jSRZ2P6dmeTOJL9N8rskv07yyl7HJ0ka037AF6tqi6qaWVUPp5nL+ylL0cYPgX/ceDvJrGXYZ11gLZoE9S1JNqKZQ32inQHsk2S1dpT+80eoM5SMvr4dob3fMhxj/yQrtPPj7wr8egn77AGcV1UPb5+HLWjma3/hsHprA9e2ifPdgS0AkmwC3FFVX6aZt71zGqF3ATfwwNQuI7YxmnaamI/RTLnTGcff2uWDO8pvA9ZkBFW1kOY6HEkzSn9RVd0KXJHkxe15JMmOY8UjSVoyE/CSJEnT1+VV9biqejTNz8sPS/KqXgclSRrVgTQ35+x0IjB8zvaxHALMTnJ+kouB141jn/8F1k1yYZLzgN2r6jzgtzQjrT9HM3J7QlXVuTRToSygOc+fj1DnZuAzNNO6fAv4zVIe5iSaaXPOoxnl/eaqGml6l07jfR6+QnOt59OMZB+6WeljgV8nWUBzw9P/HbbfocCqST40Rhtj+T8WH+3/IZrR7GfS/GpiyE9ppiNakGT/Edr5GvCy9u+Qg4BXt/8OLgL2Hkc8kqQxpPnFk6a7GZvPqB3/0y+uJU0PZ75p2T//JTmnvZmYNC0lWVhVM9qfoJ/S3vxtaNvTgSPam7SNaputZtVR7/txlyOVNBmcA3752G+Qxrb5xtvUmw/6aK/DkKasNx4x0g97NF2N1m9wBLwkSdLgOBfYdqQNSeYkmZ9k/q233jDJYUmSJEnS9GQCXpIkaXCMeiO6qppXVbOravZaa60/mTFJkiRJ0rRlAl6SJGlwPA74Xa+DkCRJkqRBYQJekiRpALRzwn8E+ESPQ5EkSZKkgbHikqtIkiSpT22V5LfAqsBtwCeq6vM9jkmSJEmSBoYJeEmSpGmkqma0f68EVuttNJIkSZI02EzAS5IkaTFrr7sie+6/Qa/DkCRJkqS+5xzwkiRJkiRJkiR1gSPgJUmStJjbb7iPs4+9ttdhSJrmnnDwQ3sdgiRJUtc5Al6SJEmSJEmSpC4wAS9JktTHklSSIzrWD08yN8luSX45rO6KSa5J8rDJj1SSJEmSBo8JeEmSpP52N/CiJMPvmnoGsFmSmR1lewAXVtXVkxWcJEmSJA0yE/CSJEn97T5gHnBYZ2FV3Q98A9i/o/gA4LjJC02SJEmSBpsJeEmSpP53NHBQkrWHlR9Hk3QnySrAc4ETR2ogyZwk85PMv/m2G7oarCRJkiQNChPwkiRJfa6qbgW+CBwyrPw3wIwkjwL2BM6uqptGaWNeVc2uqtnrrLl+12OWJEmSpEGwYq8DkCRJ0oT4OHAu8Plh5cfTjIJ/NE4/I0mSJEmTyhHwkiRJ00BV3Qh8HXj1sE3HAS8Dng6cPNlxSZIkSdIgMwEvSZI0fRwBbNBZUFUXA3cAp1XV7T2JSpIkSZIGlFPQSJIk9bGqmtGxfA2w+gh1dpzUoCRJ0kB46GZr88Yjnt/rMCRpSjMBL0mSpMWssf6KPOHgh/Y6DEmSJEnqe05BI0mSJEmSJElSFwzMCPgkBXy0qv6jXT8cmFFVcyeo/VcAbwbSPj5XVR9J8h7gjKr6cZJDgXlVdUe7z/eAl1bVzRMRgyRJ0kS469p7+f3R1/Q6DEkD5JFv2KjXIUiSJHXFII2Avxt4UZINllhzKSXZEzgUeFZVPQbYCbgFoKreVVU/bqseSse8rFX1XJPvkiRJkiRJkjQ9DVIC/j5gHnDY8A1JtkjykyTnt383b8uPTXJUkrOS/DHJfqO0/Tbg8Kq6CqCq7qqqz3S0sV+SQ4BNgJ8m+Wm77cokGyR5XZIF7eOKju3PSvLLJOcm+UaSGR37vbstvyDJthN7qSRJUr9IUkm+1LG+YpLrkpyS5FUdfYx72n7DgiQf6GXMkiRJkjQoBikBD3A0cFCStYeVfxL4YlXtAHwFOKpj28OApwB7AaN9WN0eOGesA1fVUcBVwO5VtfuwbcdU1SxgF+CvwEfbkfrvBPaoqp2A+cC/d+x2fVv+aeDwkY6ZZE6S+Unm37vw3rHCkyRJ/et2YPskq7XrzwT+BlBVn6+qWW0/Y6gfMquq3tqbUCVJkiRpsAxUAr6qbgW+CBwybNMTga+2y1+iSbgP+VZV3V9VFwPdnpjwSOC0qvoO8ARgO+DMJAuAVwJbdNT9Zvv3HGDmSI1V1byqml1Vs1easVLXgpYkST33feB57fKBwHE9jEWSJEmS1BqoBHzr48CrgTXGqFMdy3d3LAcgyXuHfs7dll8E7Lw8QSU5mCbB/u6OY/1oaNRaVW1XVa8eIa5FDNDNdCVJ0oiOBw5IsiqwA/CrpW2g85dzNy28ccIDlCRJkqRBNHAJ+Kq6Efg6TRJ+yFnAAe3yQcAvltDGOzp+zg3wfuBDSTYGSLJKO+f7cLcBaw4vTLIzzTQyL6uq+9vis4EnJ9m6rbN6kkeO4xQlSdKAqarzaX4RdyDwvWVs4x+/nFt3xnoTGZ4kSZIkDayBS8C3jgA26Fg/BHhVkvOBlwP/tjSNVdX3aOaX/3GSi2imhRlpVPo84PtDN1nt8EZgPZobtC5I8tmqug44GDiujetswJutSpKk0ZwMfASnn5EkSZKkKWNgpi6pqhkdy9cAq3esXwk8fYR9Dh6tjRHqfh74/FhtVNUngE90rM9sF181Spun0dyYdXj5zI7l+cBuo8UlSZIGxueAW6rqgiS79TgWSZIkSRIDlICXJEmazqrqrzQ3dJckSZoUV19xOe992X69DkOSAHjHl0/odQgjMgEvSZLUx0b6hV5VnQ6cPqxs5uREJEmSJEkaYgJekiRJi1n1oSvxyDds1OswJEmSJKnvDepNWCVJkiRJkiRJ6ipHwEuSJGkx9/79Hv7+4T/1OgxJWszG/7lFr0OQJElaao6AlyRJkiRJkiSpC0zAS5Ik9bEkmyX5dpLLklye5MgkKyfZLcktSX6b5JIkH+l1rJIkSZI0aEzAS5Ik9akkAb4JfKuqtgEeCcwA3ttW+XlVPQ54HLBXkif3JlJJkiRJGkzOAS9JktS/ng7cVVWfB6iqRUkOA64AfjpUqaruTLIA2LQnUUqSJEnSgHIEvCRJUv96DHBOZ0FV3Qr8Gdh6qCzJusA2wBmjNZRkTpL5SebfcPuNXQpXkiRJkgaLCXhJkqT+FaDGKH9qkvOBvwOnVNXfR2uoquZV1eyqmr3+Gut1J1pJkiRJGjAm4CVJkvrXRcDszoIkawEPBy6nmQN+B+CxwL8mmTXpEUqSJEnSADMBL0mS1L9+Aqye5BUASVYAjgCOBe4YqlRVvwfeD7ylBzFKkiRJ0sAyAS9JktSnqqqAfYAXJ7kM+D1wF/D2EaofA+yaZMtJDFGSJEmSBtqKvQ5AkiRJy66q/gI8f4RNp7ePoXp3AptOTlSSJEmSJDABL0mSpGFW2nhlNv7PLXodhiRJkiT1PaegkSRJkiRJkiSpCxwBL0mSpMXce80dXPOxBb0OQ5LGtNFhs3odgiRJ0hI5Al6SJEmSJEmSpC4wAS9JktSnklSSIzrWD08yt12em+RvSRYkuSzJN5Ns17NgJUmSJGkAmYCXJEnqX3cDL0qywSjbP1ZVs6pqG+BrwGlJNpy88CRJkiRpsJmAlyRJ6l/3AfOAw5ZUsaq+BvwQeGm3g5IkSeOTZOGw9YOTfLJdfl2SV0xSHO9JssdkHEuSBo03YZUkSepvRwPnJ/nQOOqeC2w70oYkc4A5AJut+7CJi06SJC2TqjpmEo/1rsk6liQNGkfAS5Ik9bGquhX4InDIOKpnjHbmVdXsqpq93hrrTFR4kiRpGbX3czm8XT4kycVJzk9yfMf2LyU5rb3fy2va8hlJfpLk3CQXJNm7LZ+Z5HdJPpPkoiQ/TLJau+3YJPu1y7skOSvJeUl+nWTN3lwBSZoeHAEvSZLU/z5OM7r980uo9zhgftejkSRJ47VakgUd6+sBJ49Q763AllV1d5J1Osp3AJ4ArAH8Nsl3gWuBfarq1vY+MWcnGWpzG+DAqnpNkq8D+wJfHmosyco0943Zv6p+k2Qt4M6JOFFJGlSOgJckSepzVXUj8HXg1aPVSbIv8CzguMmKS5IkLdGd7Q3TZ1XVLGC0qWDOB76S5GU094AZ8u2qurOqrgd+Cjye5hdv70tyPvBjYFNgo7b+FVW1oF0+B5g57DiPAq6uqt9A80u7quo8HknmJJmfZP7td9299GcsSQPGBLwkSdL0cASwwbCyw5IsSHIZ8DLg6VV13eSHJkmSltPzaO77sjNwTpKhGQ1qWL0CDgI2BHZuk/rXAKu22zsz5ot48MwIGaHNxQ/QMW3dGquusrTnIUkDxwS8JElSn6qqGR3L11TV6lU1t12fW1WbtiPqtqmqfarq4p4FK0mSlkmShwAPr6qfAm8G1gGG+gB7J1k1yfrAbsBvgLWBa6vq3iS7A1ssxeEuATZJskt77DU7kv2SpGXgi6gkSZIWs9JGq7PRYbN6HYYkSWqsAHw5ydo0I9Q/VlU3JwH4NfBdYHPgf6rqqiRfAb6TZD6wgCapPi5VdU+S/YFPtDdovRPYA1g4kSckSYPEBLwkSZIkSVIPdP6arV0/Fji2XZ7bsekpozTx+6qaM6yN64EnjlJ/+456H+lYPrhj+Tc0N3aVJE0AE/CSJElazL3XLuSao87odRiStEw2OmTXXocgSZL0DybgJUmSJEmS+sywEfKSpCnKm7BKkiRNA0n2SVJJtm3X35BkQcfjwnb7o3sdqyRJkiQNChPwkiRJ08OBwC+AAwCq6uiqmjX0AE4GvlJVv+thjJIkSZI0UEzAS5Ik9bkkM4AnA6+mTcAP274r8BLg9ZMcmiRJkiQNNBPwkiRJ/e+FwKlV9XvgxiQ7DW1Isg7weeCVVXXraA0kmZNkfpL5Ny68ucvhSpIkSdJgMAEvSZLU/w4Ejm+Xj2/Xh3wa+HJVnTlWA1U1r6pmV9Xs9Was050oJUmSJGnArNjrACRJkrTskqwPPB3YPkkBKwCV5M3AK4CZwMt7F6EkSZIkDS5HwEuSJPW3/YAvVtUWVTWzqh4OXAHsCrwXOKiq7utphJIkSZI0oBwBL0mS1N8OBD4wrOxE4GBgDeCbSTq3vamqfj45oUmSJEnSYDMBL0mS1MeqarcRyo5qF181udFIkiRJkjqZgJckSdJiVnroDDY6ZNdehyFJkiRJfc854CVJkiRJkiRJ6gJHwA+IbR+6LWe+6cxehyFJkvrAfdfewrWfPKXXYUjScnvoG/fqdQiSJGnAOQJekiRJkiRJkqQuMAEvSZLUx5JUki91rK+Y5Lokp7TrB7frCzoe2/UuYkmSJEkaHE5BI0mS1N9uB7ZPslpV3Qk8E/jbsDpfq6o3Tn5okiRJkjTYHAEvSZLU/74PPK9dPhA4roexSJIkSZJaJuAlSZL63/HAAUlWBXYAfjVs+/7DpqBZbXgDSeYkmZ9k/g0Lb5mMmCVJkiRp2nMKGkmSpD5XVecnmUkz+v17I1RZ4hQ0VTUPmAcwa/NtasKDlCRJ087DttyKd3z5hF6HIUlTmgl4SZKk6eFk4CPAbsD6vQ1FkiRJkgQm4CVJkqaLzwG3VNUFSXbrcSySJEmSJJwDXpIkaVqoqr9W1ZGjbB4+B/yTJjU4SZIkSRpQjoCXJEnqY1U1Y4Sy04HT2+VjgWMnMyZJkiRJUsMEvCRJkhaz4kPX5qFv3KvXYUiSJElS30tV9ToGTYIktwGX9jqOcdgAuL7XQYyDcU6cfogRjHOi9TLOLapqwx4dW+oLfdRvWBr98vq4NDyn/uA59YfRzsl+gzSGPugzTOXXK2NbNsa2bIxt2S1NfCP2GxwBPzgurarZvQ5iSZLMN86J0w9x9kOMYJwTrV/ilAZYX/QblsZ0fN3xnPqD59QfpuM5SZNkSvcZpvL/bWNbNsa2bIxt2U1EfN6EVZIkSZIkSZKkLjABL0mSJEmSJElSF5iAHxzzeh3AOBnnxOqHOPshRjDOidYvcUqDajr+H/Wc+oPn1B88J0lDpvr/nakcn7EtG2NbNsa27JY7Pm/CKkmSJEmSJElSFzgCXpIkSZIkSZKkLjABL0mSJEmSJElSF5iAn+aSPCfJpUn+kOStvY5nSJKHJ/lpkt8luSjJv7Xlc5P8LcmC9vHcKRDrlUkuaOOZ35atl+RHSS5r/67b4xgf1XHNFiS5NcmhU+F6JvlckmuTXNhRNur1S/K29t/rpUme3eM4P5zkkiTnJzkpyTpt+cwkd3Zc12N6HOeoz/MUu55f64jxyiQL2vKeXU9Ji5uq/Yal1Q/v3UvSL++fS6Nf3sOWxhh92r59rsY4p759rpKsmuTXSc5rz+ndbXnfPk/SVDCV+g3L8to1yfFNyb5JpmAuYSr3gUaJbUrkDaZyP2uU2KZEfmDS+nJV5WOaPoAVgMuBRwArA+cB2/U6rja2hwE7tctrAr8HtgPmAof3Or5hsV4JbDCs7EPAW9vltwIf7HWcw573vwNbTIXrCewK7ARcuKTr1/4bOA9YBdiy/fe7Qg/jfBawYrv8wY44Z3bWmwLXc8Tneapdz2HbjwDe1evr6cOHjwceU7nfsAzn0lfv3aOcQ1+8f07AOU2597ClPKfR+rR9+1yNcU59+1wBAWa0yysBvwKe0M/Pkw8fvX5MtX7D0r529SC+Kd83YYrkEqZyH2iU2KZE3mCU2KbEe/dIsQ3b3rP8wBivHRP6b84R8NPb44E/VNUfq+oe4Hhg7x7HBEBVXV1V57bLtwG/AzbtbVRLZW/gC+3yF4AX9i6UB3kGcHlV/anXgQBU1RnAjcOKR7t+ewPHV9XdVXUF8Aeaf8c9ibOqflhV97WrZwObTUYsYxnleo5mSl3PIUkCvAQ4bjJikTRuU7bfMEGm8nv3g/TL++fS6Jf3sKUxRp+2b5+rZein98M5VVUtbFdXah9FHz9P0hQwpfoNfZpjmGp9kymRS5jKfaCpnDeYyv2sqZwfmKy+nAn46W1T4C8d639lCr4BJZkJPI5mJArAG9uf7nyuFz/BGkEBP0xyTpI5bdlGVXU1NP9ZgYf2LLoHO4DFX7im2vWE0a/fVP43+8/A9zvWt0zy2yQ/S/LUXgXVYaTneapez6cC11TVZR1lU+16SoNoqr5mLIt+e+8er358/xyPfnoPG9WwPu20eK7G2U/vi3NKskL78/ZrgR9V1bR5nqQembL/T6ZojqEf+iZTOZfQL6/XUzFvMNXfu6dMfqCbfTkT8NNbRiirSY9iDElmACcCh1bVrcCnga2AWcDVND9D6bUnV9VOwJ7AG5Ls2uuARpNkZeAFwDfaoql4PccyJf/NJnkHcB/wlbboamDzqnoc8O/AV5Os1av4GP15npLXEziQxTt2U+16SoNqqr5mLIu+ee+eIP383PXbe9iIRujTjlp1hLIpeV5L0U/vi3OqqkVVNYtmZOLjk2w/RvW+OCepx6bk/5MpnGOY0n2TPs4lTJl/h1M0b9AP791TIj/Q7b6cCfjp7a/AwzvWNwOu6lEsD5JkJZp/3F+pqm8CVNU1bef4fuAzTIGfelbVVe3fa4GTaGK6JsnDANq/1/YuwsXsCZxbVdfA1LyerdGu35T7N5vklcBewEHVTvjV/tTohnb5HJo5vx7ZqxjHeJ6n4vVcEXgR8LWhsql2PaUBNuVeM5ZVn713L42+ef8cr356DxvNSH1a+vy5Wsp+el+c05Cquhk4HXgOff48ST025f6fTOUcQx/0TaZ6LmFKv15P1bzBVH/vnir5gcnoy5mAn95+A2yTZMv228wDgJN7HBPwjzme/g/4XVV9tKP8YR3V9gEuHL7vZEqyRpI1h5Zpbq5xIc11fGVb7ZXAt3sT4YMs9s3hVLueHUa7ficDByRZJcmWwDbAr3sQHwBJngO8BXhBVd3RUb5hkhXa5UfQxPnH3kQ55vM8pa5naw/gkqr661DBVLue0gCbsv2GpdGH791Loy/eP5dGn72HPchofVr6+Llahn56P5zThknWaZdXo+2P0MfPkzQFTKl+w1TOMfRJ32Sq5xKm7Ov1VM4b9MF7d8/zA5PWl6tJuqusj948gOfS3MH3cuAdvY6nI66n0PxE43xgQft4LvAl4IK2/GTgYT2O8xE0dzc+D7ho6BoC6wM/AS5r/643Ba7p6sANwNodZT2/njRv4lcD99J8U/jqsa4f8I723+ulwJ49jvMPNHN7Df0bPaatu2/77+E84Fzg+T2Oc9TneSpdz7b8WOB1w+r27Hr68OFj8cdU7Tcs5Tn0zXv3Es6jL94/J+Ccptx72FKe02h92r59rsY4p759roAdgN+2sV8IvKst79vnyYePqfCYSv2GZXntmsTYpnTfhCmWS5jKfaBRYpsSeYNRYpsS790jxdaWH0uP8wNjvHZM6L+5tDtKkiRJkiRJkqQJ5BQ0kiRJkiRJkiR1gQl4SZIkSZIkSZK6wAS8JEmSJEmSJEldYAJekiRJkiRJkqQuMAEvSZIkSZIkSVIXmICXtEySbJzk+CSXJ7k4yfeSPHIC298tyZMmqj1JktQb9hkkSdJ42W/QdGQCXtJSSxLgJOD0qtqqqrYD3g5sNIGH2Q3wTVGSpD5mn0GSJI2X/QZNVybgJS2L3YF7q+qYoYKqWgD8IsmHk1yY5IIk+8M/vmE+Zahukk8mObhdvjLJu5Oc2+6zbZKZwOuAw5IsSPLUSTw3SZI0cewzSJKk8bLfoGlpxV4HIKkvbQ+cM0L5i4BZwI7ABsBvkpwxjvaur6qdkrweOLyq/iXJMcDCqvrIRAUtSZImnX0GSZI0XvYbNC05Al7SRHoKcFxVLaqqa4CfAbuMY79vtn/PAWZ2KTZJkjR12GeQJEnjZb9Bfc0EvKRlcRGw8wjlGaX+fSz+erPqsO13t38X4S9zJEmaTuwzSJKk8bLfoGnJBLykZXEasEqS1wwVJNkFuAnYP8kKSTYEdgV+DfwJ2C7JKknWBp4xjmPcBqw58aFLkqRJZJ9BkiSNl/0GTUt++yNpqVVVJdkH+HiStwJ3AVcChwIzgPOAAt5cVX8HSPJ14HzgMuC34zjMd4ATkuwNvKmqfj7R5yFJkrrLPoMkSRov+w2arlJVvY5BkiRJkiRJkqRpxyloJEmSJEmSJEnqAhPwkiRJkiRJkiR1gQl4SZIkSZIkSZK6wAS8JEmSJEmSJEldYAJekiRJkiRJkqQuMAEvSZIkSZIkSVIXmICXJEmSJEmSJKkL/j/TVhmi2WzGHAAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "
"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Plotting different columns\n",
- "def plot_bar(data, columns):\n",
- " num_columns = len(columns)\n",
- "\n",
- " # Set up subplots based on the number of columns\n",
- " fig, axes = plt.subplots(1, num_columns, figsize=(num_columns * 7, 6))\n",
- "\n",
- " # Iterate through columns and create bar plots with CI\n",
- " for i, col in enumerate(columns):\n",
- " ax = axes[i] if num_columns > 1 else axes # Handle single-column case\n",
- "\n",
- " sns.barplot(x=data.index, y=col, data=data, ci=None, ax=ax) # ci=None to disable confidence intervals\n",
- " ax.set_title(f'Bar Plot for {col}')\n",
- " ax.set_xlabel('Count')\n",
- " ax.set_ylabel('Index')\n",
- "\n",
- " plt.tight_layout()\n",
- " plt.show()\n",
- " \n",
- "plot_bar(df, ['CitizenDesc', 'State', 'RaceDesc'])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "fcb71ce0",
- "metadata": {},
- "source": [
- "## Can we predict who is going to terminate and who isn't? What level of accuracy can we achieve on this? \n",
- "Predicting who will be terminated or not requires numerical data, as we have encoded before. We will use `encoded_df` as an already encoded version of `df` and pass it into ML models.\n",
- "[Back To Top](#top)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 124,
- "id": "a9166e89",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{0: array(['N/A-StillEmployed'], dtype=object),\n",
- " 1: array(['career change', 'hours', 'return to school', 'Another position',\n",
- " 'unhappy', 'attendance', 'performance',\n",
- " 'Learned that he is a gangster', 'retiring',\n",
- " 'relocation out of area', 'more money', 'military',\n",
- " 'no-call, no-show', 'Fatal attraction',\n",
- " 'maternity leave - did not return', 'medical issues',\n",
- " 'gross misconduct'], dtype=object)}"
- ]
- },
- "execution_count": 124,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# I wanted to make sure that Termd and TermReason are accurately representing one another\n",
- "column_mapping(df, 'Termd', 'TermReason')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 125,
- "id": "9984ed6f",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Importing sklearn libaries\n",
- "from sklearn.model_selection import train_test_split\n",
- "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 126,
- "id": "537a1057",
- "metadata": {},
- "outputs": [],
- "source": [
- "# This is the models to be used to test the data. Feel free to adjust\n",
- "from sklearn.ensemble import RandomForestClassifier\n",
- "from sklearn.svm import SVC\n",
- "from sklearn.neighbors import KNeighborsClassifier\n",
- "from sklearn.linear_model import LogisticRegression\n",
- "from sklearn.tree import DecisionTreeClassifier\n",
- "from sklearn.naive_bayes import GaussianNB\n",
- "from sklearn.ensemble import AdaBoostClassifier\n",
- "from sklearn.ensemble import GradientBoostingClassifier"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 127,
- "id": "639634f8",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Split the data into features (X) and labels (y)\n",
- "X = encoded_df.drop(columns=['Employee_Name', 'EmpID', 'TermReason_E', 'EmploymentStatus_E'])\n",
- "y = encoded_df['Termd']\n",
- "\n",
- "# Split the data into training and testing sets\n",
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
- "\n",
- "# Define a dictionary to store results\n",
- "results = {'Model': [], 'F1_score': [], 'Accuracy': [], 'Precision': [], 'Recall': []}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 128,
- "id": "57fb2722",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Pass the models loaded in here. Again, adjust as necessary\n",
- "models = {\n",
- " 'Random Forest': RandomForestClassifier(),\n",
- " 'Support Vector Machine': SVC(),\n",
- " 'K-Nearest Neighbors': KNeighborsClassifier(),\n",
- " 'Logistic Regression': LogisticRegression(),\n",
- " 'Decision Tree': DecisionTreeClassifier(),\n",
- " 'Naive Bayes': GaussianNB(),\n",
- " 'AdaBoost': AdaBoostClassifier(),\n",
- " 'Gradient Boosting': GradientBoostingClassifier()\n",
- "}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 129,
- "id": "4d917064",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Users\\sang.yogi\\Anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, msg_start, len(result))\n"
- ]
- }
- ],
- "source": [
- "# Run the model one by one through loop\n",
- "for model_name, model in models.items():\n",
- " # Train the model\n",
- " model.fit(X_train, y_train)\n",
- "\n",
- " # Make predictions\n",
- " y_pred = model.predict(X_test)\n",
- "\n",
- " # Evaluate the model\n",
- " f1 = f1_score(y_test, y_pred)\n",
- " accuracy = accuracy_score(y_test, y_pred)\n",
- " precision = precision_score(y_test, y_pred)\n",
- " recall = recall_score(y_test, y_pred)\n",
- "\n",
- " # Store results in the dictionary\n",
- " results['Model'].append(model_name)\n",
- " results['F1_score'].append(f1)\n",
- " results['Accuracy'].append(accuracy)\n",
- " results['Precision'].append(precision)\n",
- " results['Recall'].append(recall)\n",
- "\n",
- "# Create a DataFrame from the results dictionary\n",
- "results_df = pd.DataFrame(results)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 130,
- "id": "78e97b44",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
Model
\n",
- "
F1_score
\n",
- "
Accuracy
\n",
- "
Precision
\n",
- "
Recall
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
0
\n",
- "
Random Forest
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
\n",
- "
\n",
- "
1
\n",
- "
Support Vector Machine
\n",
- "
0.000000
\n",
- "
0.650794
\n",
- "
0.000000
\n",
- "
0.000000
\n",
- "
\n",
- "
\n",
- "
2
\n",
- "
K-Nearest Neighbors
\n",
- "
0.300000
\n",
- "
0.555556
\n",
- "
0.333333
\n",
- "
0.272727
\n",
- "
\n",
- "
\n",
- "
3
\n",
- "
Logistic Regression
\n",
- "
0.222222
\n",
- "
0.666667
\n",
- "
0.600000
\n",
- "
0.136364
\n",
- "
\n",
- "
\n",
- "
4
\n",
- "
Decision Tree
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
\n",
- "
\n",
- "
5
\n",
- "
Naive Bayes
\n",
- "
0.693878
\n",
- "
0.761905
\n",
- "
0.629630
\n",
- "
0.772727
\n",
- "
\n",
- "
\n",
- "
6
\n",
- "
AdaBoost
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
\n",
- "
\n",
- "
7
\n",
- "
Gradient Boosting
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
1.000000
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Model F1_score Accuracy Precision Recall\n",
- "0 Random Forest 1.000000 1.000000 1.000000 1.000000\n",
- "1 Support Vector Machine 0.000000 0.650794 0.000000 0.000000\n",
- "2 K-Nearest Neighbors 0.300000 0.555556 0.333333 0.272727\n",
- "3 Logistic Regression 0.222222 0.666667 0.600000 0.136364\n",
- "4 Decision Tree 1.000000 1.000000 1.000000 1.000000\n",
- "5 Naive Bayes 0.693878 0.761905 0.629630 0.772727\n",
- "6 AdaBoost 1.000000 1.000000 1.000000 1.000000\n",
- "7 Gradient Boosting 1.000000 1.000000 1.000000 1.000000"
- ]
- },
- "execution_count": 130,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Print out results\n",
- "results_df"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "07e39640",
- "metadata": {},
- "source": [
- "With examination of the numerical results, it appears there might be overfitting or issues with the outcomes. This suspicion is highlighted by the majority showing \"very accurate\" results, contrasted with a few models such as `K-Nearest`, `Logistic Regression`, and `Naive Bayes` exhibiting poor accuracy. Considering the relatively small size of the dataset (311 rows), we will tentatively accept these findings for the time being."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "1cad2a37",
- "metadata": {},
- "source": [
- "## Are there areas of the company where pay is not equitable? \n",
- "\n",
- "For this question, I decided to use 4 columns from `encoded_df` (numerical data):\n",
- "- `Position_E`\n",
- "- `Department_E`\n",
- "- `GenderID`\n",
- "- `RaceDesc_E`\n",
- "\n",
- "[Back To Top](#top)\n",
- "\n",
- "These columns is deemed represent _\"areas of the company\"_, and will be analyzed against the column `Salary` to see any disparities from visual observation.\n",
- "### Visual Observation of Disparity"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 148,
- "id": "0bae43a9",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Department_E\n",
- "Executive Office 250,000\n",
- "IT/IS 97,065\n",
- "Software Engineering 94,989\n",
- "Admin Offices 71,792\n",
- "Sales 69,061\n",
- "Production 59,954\n",
- "Name: Salary, dtype: object"
- ]
- },
- "execution_count": 148,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Group Department with Salary, then use previously made Dictionary to map it into contextual view (also format is changed)\n",
- "encoded_df.groupby('Department_E')['Salary'].mean().sort_values(ascending=False).rename(index=label_encoders['Department']).map('{:,.0f}'.format)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 149,
- "id": "a9f79bfa",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Position_E\n",
- "President & CEO 250,000\n",
- "CIO 220,450\n",
- "Director of Sales 180,000\n",
- "IT Director 178,000\n",
- "Director of Operations 170,500\n",
- "IT Manager - Infra 157,000\n",
- "Data Architect 150,290\n",
- "IT Manager - DB 144,960\n",
- "IT Manager - Support 138,888\n",
- "Principal Data Architect 120,000\n",
- "BI Director 110,929\n",
- "Database Administrator 108,500\n",
- "Enterprise Architect 103,613\n",
- "Sr. Accountant 102,859\n",
- "Sr. DBA 102,234\n",
- "Software Engineer 96,719\n",
- "BI Developer 95,465\n",
- "Sr. Network Engineer 93,071\n",
- "Shared Services Manager 93,046\n",
- "Data Analyst 89,933\n",
- "Data Analyst 88,527\n",
- "Senior BI Developer 84,803\n",
- "Software Engineering Manager 77,692\n",
- "Production Manager 75,294\n",
- "Sales Manager 69,240\n",
- "Area Sales Manager 64,933\n",
- "Production Technician II 64,892\n",
- "IT Support 63,684\n",
- "Accountant I 63,508\n",
- "Network Engineer 61,605\n",
- "Production Technician I 55,524\n",
- "Administrative Assistant 52,280\n",
- "Name: Salary, dtype: object"
- ]
- },
- "execution_count": 149,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Group Position with Salary, then use previously made Dictionary to map it into contextual view (also format is changed)\n",
- "encoded_df.groupby('Position_E')['Salary'].mean().sort_values(ascending=False).rename(index=label_encoders['Position']).map('{:,.0f}'.format)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 150,
- "id": "61dab711",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "GenderID\n",
- "1 70,629\n",
- "0 67,787\n",
- "Name: Salary, dtype: object"
- ]
- },
- "execution_count": 150,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Group Gender with Salary, then use previously made Dictionary to map it into contextual view (also format is changed)\n",
- "encoded_df.groupby('GenderID')['Salary'].mean().sort_values(ascending=False).map('{:,.0f}'.format)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 151,
- "id": "fa82a7c0",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "RaceDesc_E\n",
- "Hispanic 83,667\n",
- "Black or African American 74,431\n",
- "Asian 68,521\n",
- "White 67,288\n",
- "American Indian or Alaska Native 65,806\n",
- "Two or more races 59,998\n",
- "Name: Salary, dtype: object"
- ]
- },
- "execution_count": 151,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Group Race Description with Salary, then use previously made Dictionary to map it into contextual view (also format is changed)\n",
- "encoded_df.groupby('RaceDesc_E')['Salary'].mean().sort_values(ascending=False).rename(index=label_encoders['RaceDesc']).map('{:,.0f}'.format)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 152,
- "id": "f3cd423b",
- "metadata": {
- "scrolled": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
RaceDesc_E
\n",
- "
GenderID
\n",
- "
Position_E
\n",
- "
Department_E
\n",
- "
Salary
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
RaceDesc_E
\n",
- "
1.000000
\n",
- "
0.031101
\n",
- "
0.053618
\n",
- "
-0.000252
\n",
- "
-0.089597
\n",
- "
\n",
- "
\n",
- "
GenderID
\n",
- "
0.031101
\n",
- "
1.000000
\n",
- "
-0.093812
\n",
- "
0.002271
\n",
- "
0.056097
\n",
- "
\n",
- "
\n",
- "
Position_E
\n",
- "
0.053618
\n",
- "
-0.093812
\n",
- "
1.000000
\n",
- "
0.096064
\n",
- "
-0.184032
\n",
- "
\n",
- "
\n",
- "
Department_E
\n",
- "
-0.000252
\n",
- "
0.002271
\n",
- "
0.096064
\n",
- "
1.000000
\n",
- "
-0.198331
\n",
- "
\n",
- "
\n",
- "
Salary
\n",
- "
-0.089597
\n",
- "
0.056097
\n",
- "
-0.184032
\n",
- "
-0.198331
\n",
- "
1.000000
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " RaceDesc_E GenderID Position_E Department_E Salary\n",
- "RaceDesc_E 1.000000 0.031101 0.053618 -0.000252 -0.089597\n",
- "GenderID 0.031101 1.000000 -0.093812 0.002271 0.056097\n",
- "Position_E 0.053618 -0.093812 1.000000 0.096064 -0.184032\n",
- "Department_E -0.000252 0.002271 0.096064 1.000000 -0.198331\n",
- "Salary -0.089597 0.056097 -0.184032 -0.198331 1.000000"
- ]
- },
- "execution_count": 152,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Try and run correlation matrix\n",
- "encoded_df[['RaceDesc_E', 'GenderID', 'Position_E', 'Department_E', 'Salary']].corr()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d5995919",
- "metadata": {},
- "source": [
- "Based on findings from above, there are no apparent disparities of Salary in different groups of each columns. And also there are weak correlation in the matrix above, indicating that they could be playing a small role in `Salary` numbers.\n",
- "\n",
- "Then, I decided to run ANOVA test for those four columns against `Salary`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "beb80b93",
- "metadata": {},
- "outputs": [],
- "source": [
- "from scipy.stats import f_oneway"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 163,
- "id": "85fed2c0",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Making a function to run ANOVA with singular or multiple columns\n",
- "def test_anova(df, group_columns, value_column):\n",
- " \"\"\"\n",
- " Parameters:\n",
- " - df: Pandas DataFrame\n",
- " - group_columns: Column names to be grouped\n",
- " - value_column: Column containing salary information (or other numerical column)\n",
- " \"\"\"\n",
- " for gro in group_columns:\n",
- " # Group by group_column and extract salary groups\n",
- " groups = [group[value_column] for name, group in df.groupby(gro)]\n",
- " # Perform one-way ANOVA\n",
- " f_statistic, p_value = f_oneway(*groups)\n",
- " print(f\"Group Column: {gro} with {value_column}\")\n",
- " print(f\"F-statistic: {f_statistic}\\nP-value: {p_value}\")\n",
- " # Print hyphen for separation between outputs\n",
- " print(\"-\" * 30)\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 164,
- "id": "0d0acd5d",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Group Column: RaceDesc_E with Salary\n",
- "F-statistic: 1.2863499291564826\n",
- "P-value: 0.2695646450406796\n",
- "------------------------------\n",
- "Group Column: GenderID with Salary\n",
- "F-statistic: 0.9754391883261777\n",
- "P-value: 0.3241001178974803\n",
- "------------------------------\n",
- "Group Column: Position_E with Salary\n",
- "F-statistic: 153.84548177486272\n",
- "P-value: 1.3432601515294733e-156\n",
- "------------------------------\n",
- "Group Column: Department_E with Salary\n",
- "F-statistic: 59.34834401921235\n",
- "P-value: 4.966770445882221e-43\n",
- "------------------------------\n"
- ]
- }
- ],
- "source": [
- "# Run function for selected columns, against Salary\n",
- "test_anova(encoded_df, ['RaceDesc_E', 'GenderID', 'Position_E', 'Department_E'], 'Salary')"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "60aeac44",
- "metadata": {},
- "source": [
- "Assuming that the significance level is 0.05, we can have **Null hypothesis (H0)** and **Alternative Hypothesis (H1)** as follows:\n",
- "- `H0`: There are no significant differences in `Salary` among different groups in `[selected column(s)]`.\n",
- "- `H1`: There are significant differences in `Salary` among different groups in `[selected column(s)]`.\n",
- "\n",
- "Based on ANOVA test above, we can conclude that:\n",
- "- `RaceDesc`: With a p-value of 0.26 and a significance level of 0.05, fail to reject the null hypothesis. There is not enough evidence to suggest that there are significant differences in salary among different racial groups.\n",
- "- `Gender`: Similarly, with a p-value of 0.32, we fail to reject the null hypothesis for gender. There is not enough evidence to suggest that there are significant differences in salary based on gender.\n",
- "- `Position`: The p-value of 1.34 is unusually high and might indicate a potential issue. P-values should typically be between 0 and 1. This result may suggest a problem with the statistical analysis or data.\n",
- "- `Department`: With a p-value of 4.96, again, there seems to be an issue. Similar to the position, this result is not within the standard range of 0 to 1 for p-values.\n",
- "\n",
- "To my interpretation, the absurdly high p-values could be coming from factors such as:\n",
- "- As the number of groups increases, the likelihood of finding a significant result by chance (Type I error) also increases. This is known as the problem of multiple comparisons.\n",
- "- With a larger number of groups, we need a larger sample size to achieve the same level of statistical power (ability to detect a true effect if it exists). In this case, we only have 311 rows of data.\n",
- "- Having many groups can make it challenging to interpret the overall pattern of differences, especially if there is no clear hypothesis about which specific groups are expected to differ."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "7cccbeac",
- "metadata": {},
- "source": [
- "## What are our best recruiting sources if we want to ensure a diverse organization \n",
- "\n",
- "[Back To Top](#top)\n",
- "\n",
- "For this question, I decided to use information from these columns from `df` (textual data):\n",
- "- `RecruitmentSource`\n",
- "- `FromDiversityJobFairID`\n",
- "- `GenderID`\n",
- "- `RaceDesc`\n",
- "\n",
- "Assuming that being 'diverse' is a cultural standpoint, these columns will be analyzed to see recruitment profiles. (Feel free to change it)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 166,
- "id": "a0d2e060",
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Indeed 87\n",
- "LinkedIn 76\n",
- "Google Search 49\n",
- "Employee Referral 31\n",
- "Diversity Job Fair 29\n",
- "CareerBuilder 23\n",
- "Website 13\n",
- "Other 2\n",
- "On-line Web application 1\n",
- "Name: RecruitmentSource, dtype: int64"
- ]
- },
- "execution_count": 166,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df['RecruitmentSource'].value_counts()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 169,
- "id": "1b4a55a4",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAHUCAYAAAAtLidwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABXDElEQVR4nO3debymY/3A8c93FvueIQxGshM1QyI/JEXWQkiWlKWiIrtISimRqF+ylKVFshRR+ImiVJbsS5YY+5qdYcz398d1HR7HjDkT577POc/n/XrN65znfu7nub/nnme5v9f1va4rMhNJkiRJasqwtgOQJEmS1F1MQiRJkiQ1yiREkiRJUqNMQiRJkiQ1yiREkiRJUqNMQiRJkiQ1yiREGsIi4piIOOAteq6FIuKZiBheb18SEZ95K567Pt/vI2Lbt+r5puG434iIRyPiwaaPPTlv5XmNiDERkREx4q14voEgIlaLiFvbjkOS9OaYhEiDVETcFRHPR8TTEfFERPw1InaOiFfe15m5c2Z+vY/P9cE32iczx2fmLJn58lsQ+0ER8bNez79uZp70Zp97GuNYEPgysHRmvn0K+8waEUfUc/RsRIyPiNMjYqUmY21b/T97qSaiPa+39zUdR2ZemplLdMQ11dduf4mI7SLisqnss0xEXBAR/6nn7aqI+EhTMUrSQGUSIg1uG2TmrMDCwKHA3sAJb/VBhlJLei8LA49l5sOTuzMipgf+CCwHrA/MBiwFnAoMqAvJhv6PfpWZswBzAxcDv34rn3yIvs7OAS4E5gXmAb4APPVWH2SInjtJQ5hJiDQEZOaTmXk2sDmwbUQsCxARJ0bEN+rvc0fE72pr7OMRcWlEDIuIU4CFgHNqK/deHWU8n46I8cAfp1Das2hE/CMinoyI30bEXPVYa0TEvZ0x9rRYR8Q6wH7A5vV419b7XylDqnF9JSLujoiHI+LkiJi93tcTx7a1V+LRiNh/SucmImavj3+kPt9X6vN/kHJxOH+N48TJPHxrYDSwcWbekJkvZ+azmXl6Zh7UcYwlI+LCel5vjYiPd9x3YkT8MCLOrb1Wf4+IRTvuXzsibqnn8AdA9Ip/+4i4ubaknx8RC3fclxHx+Yi4DbhtSucA2D4i7o+IByLiy/Wxb4+I5yLibR3PN7aep5Fv8Fxk5kTg58ACETGq4zyfUI9xX5Qyt+Edz71D/TuejoibIuI9dftdEbF3RFwHPBsRI+rf9c5e57DndfzKa2sqr91PRcQ99bztHBErRsR19fX/g2k8xztHxG31/h9GsRRwDPC+euwnep+niJgbWAQ4LjNfrP/+kpmXdeyzQ0TcXl87Z0fE/HX7695vvd4j20XEXyLiexHxOHBQRMwYEYfX1/mTEXFZRMxY9185Su/VExFxbUSs8Ub/x5LU30xCpCEkM/8B3AusNpm7v1zvG0Vpld2vPCS3BsZTelVmyczvdDxmdUrL/4encMhtgO2B+YGJwFF9iPEPwDepreqZufxkdtuu/lsTeAcwC/CDXvu8H1gCWAs4sF4UTs7RwOz1eVavMX8qM/8PWBe4v8ax3WQe+0Hg/Mx8dkp/T0TMTElmfkFp6d4S+N+IWKZjty2BrwFzArcDh9THzg2cAXyF0rtwB7Bqx3NvTPl/+hjl/+1S4Je9QtgYeC+w9JRipJzHxYAPAftExAcz80HgEuDjHft9Ejg1M196g+ciIqajnMfHgP/UzSdRXgPvBN5dj9VzwbwZcFB9zGzAhvWxPbYE1gPmqAlOn0zltfve+jdvDhwJ7E/5/1wG+HhErF5j25ipn+P1gRWB5Snn68OZeTOwM3B5PfYckwnxMcr/988iYuOImLfzzoj4APCt+pzzAXdTetn66r3AnZTX3SHAd4GxwCrAXMBewKSIWAA4F/hG3b4HcEZPAilJbTAJkYae+ykXGr29RLnQWTgzX6q19TmV5zqotvw/P4X7T6k9BM8CB1Au7oZPYd9psRVwRGbemZnPAPsCW8Rre2G+lpnPZ+a1wLWUC8TXqLFsDuybmU9n5l3A4ZQejr6YG3hlwHpErFBbkp+KVwdHrw/clZk/zcyJmXk1JbHYtON5zszMf3T0IKxQt38EuKn2rLxEuVjuHCC/E/CtzLy5PvabwAqdLfX1/sff4P8Iyrl6NjOvB35KueiHkjh8sv5tw+v2U97geT5eW/yfB3YANs3MifXiel3gS/U4DwPfA7aoj/sM8J3MvCKL2zPz7o7nPSoz75nK3zCtvp6ZL2TmBcCzwC8z8+HMvI+SaLy77teXc3xoZj6RmeMpZWgr9CWA+v5aE7iL8rp7ICL+HBGL1V22An6SmVdn5gTK6/x9ETGmj3/j/Zl5dI17AqVB4IuZeV/ttftrfd5PAudl5nmZOSkzLwSuZICVFErqLiYh0tCzAPD4ZLYfRmmVvSAi7oyIffrwXPdMw/13AyMpF+5v1vz1+TqfewSlB6dH58X6c5Tekt7mBqabzHMt0Mc4HqMkbgBk5jW1xftjwPR188LAe2ty8kS9SN8K6BzoPqVY56fjHNaL1s5zujDw/Y7nfZxSrtUZ/9T+j3rvc3c9LsBvgaUj4h3A2sCTtTdtSk6rf/+8wA2UVveeOEdSLrJ7Yv0xpYUeYEFKL09f4nurPNTx+/OTud3zf9CXc9yX19pkZea9mblLZi5aj/UscHK9+zWv85pwP0bfX5+d521uYAYmf54XBjbr9Rp9Px2vbUlqmgPZpCEkIlakXMC8bsaezHyaUpL15VoqdHFEXJGZFwFT6hGZWk/Jgh2/L0TpbXmUcqE1U0dcwymlLn193vspF06dzz2RciE5eiqP7fRojWlh4KaO57qvj4+/CPhaRMz8BiVZ9wB/ysy1pyGuHg/QcQ4jInjtOb0HOCQzf/4GzzG1c0l9zlvq7wtRzi+Z+UJEnEZJmpbkjXtBXj1g5qMRsRNwRUT8osY5AZh7CuVU9wCLTmb7lP6G5+h4/VASunuZvL78/W+kL+d4Sqbp2Jl5T0T8kFfLvV7zOq+lfW+jvD57Xm8z8epA9t4zuHUe/1HgBcp5vrbXfvdQei13mJZ4Jak/2RMiDQERMVtErE+pJ/9ZLbvpvc/6EfHOeqH7FPBy/Qfl4v4d/8WhPxkRS0fETMDBwOl1Ct9/ATNExHpRBjl/hVd7DnqONyY6phPu5ZfAbhGxSETMwqtjSPo8XgCgxnIacEiUqXYXBnYHfvbGj3zFyZRE4ayIWDYihkfEDMC4jn1+ByweEVtHxMj6b8U3GKPS6VxgmYj4WC01+wKvvdA8Bti3Z3xJlMHfm/Ux9k4HRMRM9Xk+Bfyq19+4HWWcRl/PC5l5C3A+sFdmPgBcABxeX4vDImLRnnEXwPHAHlEGvkd9HS48pecGrgE+Uc/3OpSxPFPy3752e7yZc/wQMLqOkXmdiJgzIr5W/95hdQzQ9sDf6i6/AD5Vy/ymp7zO/56Zd2XmI5Rk5JP1PGzPGyRymTkJ+AlwRETMXx/zvvq8PwM2iIgP97yGowzwn5aEXpLeUiYh0uB2TkQ8TWnp3B84gnKROTmLAf8HPANcDvxvZl5S7/sW8JVaqrHHNBz/FOBESrnKDJSLaDLzSeBzlIvPnlbdzpbsnqldH4uIqyfzvD+pz/1n4N+UFt5dpyGuTrvW499J6SH6RX3+qcrMFyg1/TdREoangFspg5Q/Xvd5mjIIewtKy/aDwLd5bdI1ped/FNiMMr3yY5T/o7903H9Wfa5TI+IpSgnUun2JvZc/UUrxLgK+W8dJ9BzjL8Ak4Oo6ZmZaHAbsGBHzUAadT0c5V/8BTqeW+2TmrykDp38BPA38hsmPW+rxRWAD4AlKL81v3mDf//a1S43tzZzjPwI3Ag9GxKOTuf9FYAzlfdfz3BMoSR+1F/IAyhiiByhJxhYdj98B2JPy2lgG+OtU4tkDuB64glJW9m1gWGbeA2xEGYD/COXzYk+8BpDUopj6uFRJ0lAWEX8EfpGZx7cdiySpO5iESFIXq+OILgQWrL06kiT1O7tiJalLRcRJlFKhL5mASJKaZE+IJEmSpEbZEyJJkiSpUYNinZC55547x4wZ03YYkiRJGuKuuuqqRzNz1NT31JsxKJKQMWPGcOWVV7YdhiRJkoa4iLi77Ri6geVYkiRJkhplEiJJkiSpUSYhkiRJkho1KMaESJIkSd3sqquummfEiBHHA8sy8DsSJgE3TJw48TNjx459eHI7mIRIkiRJA9yIESOOf/vb377UqFGj/jNs2LABvdDfpEmT4pFHHln6wQcfPB7YcHL7DPQsSpIkSRIsO2rUqKcGegICMGzYsBw1atSTlF6bye/TYDySJEmS/jvDBkMC0qPGOsVcwyREkiRJUqNMQiRJkqRB6p577hmxwQYbLDJ69OjllllmmaVWWGGFJU8++eQ53uzz/u53v5t1zTXXfOdbEOJkmYRIkiRJg9CkSZPYYIMN3rnaaqs9c++9915/44033nzaaafdec8990zXdCwvvfTSNO1vEiJJkiQNQuecc86sI0eOzL322uuRnm2LL774i/vvv//DEydOZKeddhq97LLLLrX44osvfdhhh80NpYdjpZVWWmKdddZ5xyKLLLLMhhtuuMikSZMAOP3002dbZJFFlhk7duwSp59++hw9z/nUU08N22yzzcYsu+yySy211FJL/+xnP5sD4Kijjnrbuuuu+44PfOAD71xttdUWn5bY+3WK3oi4C3gaeBmYmJnjImIu4FfAGOAu4OOZ+Z/+jEOSJEkaaq6//voZ3/Wudz03ufuOPPLIuWefffaXb7jhhpuff/75WHHFFZfcYIMNngK4+eabZ7zmmmvuHDNmzEtjx45d8sILL5xltdVWe3aXXXYZc+GFF966zDLLTFh//fXf0fNc++2333xrrrnmU7/+9a/vevTRR4ePGzduqQ033PApgKuvvnqW66677sZ555335WmJvYl1QtbMzEc7bu8DXJSZh0bEPvX23g3EIUmSJA1ZW2+99UL/+Mc/Zhk5cmSOHj16wi233DLT2WefPSfA008/Pfymm26aYbrppsvlllvu2UUXXfQlgGWWWea5O+64Y7pZZ5315dGjR09YbrnlJgBstdVWjx1//PGjAC655JLZzj///DmOOuqotwNMmDAhbr/99ukAVltttaemNQGBdhYr3AhYo/5+EnAJJiGSJEnSNFluueWe/+1vfztnz+1TTjll/AMPPDBi3LhxSy2wwAIvHn744eM32WSTpzof87vf/W7W6aef/pWpfocPH87EiRMDICIme5zM5PTTT799+eWXn9C5/bLLLpt5pplmmvTfxN7fSUgCF0REAj/OzGOBeTPzAYDMfCAi5pncAyNiR2BHgIUWWqifw+wOY/c8uZXjXnXYNq0cV5IkaSjbYIMNnj7ggAPi29/+9qi99977EYBnnnlmGMDaa6/95I9+9KNR66+//tPTTz99XnfdddOPGTNmiqPHV1hhhRfuvffe6W688cbpl1lmmQmnnnrqXD33rbnmmk8dfvjh85544onjhw0bxl/+8pcZV1111effTOz9nYSsmpn310Tjwoi4pa8PrAnLsQDjxo0bNAuzSJIkSU0YNmwY55xzzh2f//znFzzqqKPePtdcc02caaaZXj7ooIPu3X777f9z1113Tb/ccsstlZkx11xzvXTeeefdMaXnmmmmmfLoo4++e/3113/nXHPNNfG9733vMzfffPOMAIceeuj9O+6440JLLrnk0pkZo0ePnnDxxRff/mZij8xmru8j4iDgGWAHYI3aCzIfcElmLvFGjx03blxeeeWVDUQ5tNkTIkmS9MYi4qrMHNd2HL1de+21dy2//PKPTn3PgePaa6+de/nllx8zufv6bYreiJg5Imbt+R34EHADcDawbd1tW+C3/RWDJEmSpIGnP8ux5gXOqgNcRgC/yMw/RMQVwGkR8WlgPLBZP8YgSZIkaYDptyQkM+8Elp/M9seAtfrruJIkSZIGNldMlyRJktQokxBJkiRJjTIJkSRJktSoNlZMlyRJkvQmjd3z5LFv5fNdddg2V/Vlv9NPP322PfbYY6FJkybxyU9+8tFvfvObD07rsewJkSRJktQnEydOZLfddlvovPPO+9e//vWvG88444y5rrrqqhmm9XlMQiRJkiT1ySWXXDLzwgsvPGHppZd+cYYZZsiPfexjj59++ulzTOvzmIRIkiRJ6pN77rlnugUWWODFntujR49+8b777ptuWp/HJESSJElSn2Tm67ZFxOs3ToVJiCRJkqQ+WWihhV7T83HvvfdON//88780rc9jEiJJkiSpT1ZfffVn77rrrhluueWW6V544YU488wz59pkk02emNbncYpeSZIkaRDq65S6b6WRI0dy+OGHj19nnXUWf/nll/nEJz7x6Lhx416Y1ucxCZEkSZLUZ5tvvvmTm2+++ZNv5jksx5IkSZLUKJMQSZIkSY0yCZEkSZLUKJMQSZIkSY0yCZEkSZLUKJMQSZIkSY1yil5JkiRpEBp/8HJj38rnW+jA66e67shmm2025qKLLpr9bW9728Tbbrvtxv/2WPaESJIkSeqT7bff/tGzzz77tjf7PCYhkiRJkvpk3XXXfWbUqFET3+zzmIRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGOUWvJEmSNAj1ZUrdt9oGG2ywyN/+9rdZ//Of/4yYd95537XPPvvcv9tuuz06rc9jEiJJkiSpT84555x/vxXPYzmWJEmSpEaZhEiSJElqlEmIJEmSNPBNmjRpUrQdRF/VWCdN6X6TEEmSJGngu+GRRx6ZfTAkIpMmTYpHHnlkduCGKe0z6Aemj93z5FaOe9Vh27RyXEmSJHWfiRMnfubBBx88/sEHH1yWgd+RMAm4YeLEiZ+Z0g6DPgmRJEmShrqxY8c+DGzYdhxvlYGeRUmSJEkaYkxCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDWq35OQiBgeEf+MiN/V23NFxIURcVv9OWd/xyBJkiRp4GiiJ+SLwM0dt/cBLsrMxYCL6m1JkiRJXaJfk5CIGA2sBxzfsXkj4KT6+0nAxv0ZgyRJkqSBpb97Qo4E9gImdWybNzMfAKg/55ncAyNix4i4MiKufOSRR/o5TEmSJElN6bckJCLWBx7OzKv+m8dn5rGZOS4zx40aNeotjk6SJElSW0b043OvCmwYER8BZgBmi4ifAQ9FxHyZ+UBEzAc83I8xSJIkSRpg+q0nJDP3zczRmTkG2AL4Y2Z+Ejgb2Lbuti3w2/6KQZIkSdLA08Y6IYcCa0fEbcDa9bYkSZKkLtGf5VivyMxLgEvq748BazVxXEmSJEkDjyumS5IkSWqUSYgkSZKkRpmESJIkSWqUSYgkSZKkRpmESJIkSWqUSYgkSZKkRpmESJIkSWqUSYgkSZKkRpmESJIkSWqUSYgkSZKkRpmESJIkSWqUSYgkSZKkRpmESJIkSWrUiLYD0NA3/uDlGj/mQgde3/gxJUmS1Df2hEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaZhEiSJElqlEmIJEmSpEaNaDsAaaAZu+fJrRz3qsO2aeW4kiRJTbMnRJIkSVKjTEIkSZIkNcokRJIkSVKjTEIkSZIkNcokRJIkSVKjnB3rvzT+4OVaOe5CB17fynElSZKkt4o9IZIkSZIaZRIiSZIkqVEmIZIkSZIaZRIiSZIkqVEmIZIkSZIaZRIiSZIkqVEmIZIkSZIaZRIiSZIkqVH9loRExAwR8Y+IuDYiboyIr9Xtc0XEhRFxW/05Z3/FIEmSJGng6c+ekAnABzJzeWAFYJ2IWBnYB7goMxcDLqq3JUmSJHWJfktCsnim3hxZ/yWwEXBS3X4SsHF/xSBJkiRp4OnXMSERMTwirgEeBi7MzL8D82bmAwD15zxTeOyOEXFlRFz5yCOP9GeYkiRJkhrUr0lIZr6cmSsAo4GVImLZaXjssZk5LjPHjRo1qt9ilCRJktSsRmbHyswngEuAdYCHImI+gPrz4SZikCRJkjQw9OfsWKMiYo76+4zAB4FbgLOBbetu2wK/7a8YJEmSJA08I/rxuecDToqI4ZRk57TM/F1EXA6cFhGfBsYDm/VjDJIkSZIGmH5LQjLzOuDdk9n+GLBWfx1XkiRJ0sDmiumSJEmSGmUSIkmSJKlRJiGSJEmSGmUSIkmSJKlRJiGSJEmSGtWnJCQiVu3LNkmSJEmamr72hBzdx22SJEmS9IbecJ2QiHgfsAowKiJ277hrNmB4fwYmSZIkaWia2mKF0wGz1P1m7dj+FLBpfwUlSZIkaeh6wyQkM/8E/CkiTszMuxuKSZIkSdIQNrWekB7TR8SxwJjOx2TmB/ojKEmSJElDV1+TkF8DxwDHAy/3XziSJEmShrq+JiETM/NH/RqJJEmSpK7Q1yl6z4mIz0XEfBExV8+/fo1MkiRJ0pDU156QbevPPTu2JfCOtzYcSZIkSUNdn5KQzFykvwORJEmS1B36lIRExDaT256ZJ7+14UiSJEka6vpajrVix+8zAGsBVwMmIZIkSZKmSV/LsXbtvB0RswOn9EtEkiRJkoa0vs6O1dtzwGJvZSCSJEmSukNfx4ScQ5kNC2A4sBRwWn8FJUmSJGno6uuYkO92/D4RuDsz7+2HeCRJkiQNcX0qx8rMPwG3ALMCcwIv9mdQkiRJkoauPiUhEfFx4B/AZsDHgb9HxKb9GZgkSZKkoamv5Vj7Aytm5sMAETEK+D/g9P4KTJIkSdLQ1NfZsYb1JCDVY9PwWEmSJEl6RV97Qv4QEecDv6y3NwfO65+QJEmSJA1lb5iERMQ7gXkzc8+I+BjwfiCAy4GfNxCfJEmSpCFmaiVVRwJPA2TmmZm5e2buRukFObJ/Q5MkSZI0FE0tCRmTmdf13piZVwJj+iUiSZIkSUPa1JKQGd7gvhnfykAkSZIkdYepJSFXRMQOvTdGxKeBq/onJEmSJElD2dRmx/oScFZEbMWrScc4YDrgo/0YlyRJkqQh6g2TkMx8CFglItYElq2bz83MP/Z7ZJIkSZKGpD6tE5KZFwMX93MskiRJkrqAq55LkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRG9VsSEhELRsTFEXFzRNwYEV+s2+eKiAsj4rb6c87+ikGSJEnSwNOfPSETgS9n5lLAysDnI2JpYB/gosxcDLio3pYkSZLUJfotCcnMBzLz6vr708DNwALARsBJdbeTgI37KwZJkiRJA8+IJg4SEWOAdwN/B+bNzAegJCoRMc8UHrMjsCPAQgst1ESYkgaB8Qcv18pxFzrw+laOK0nSUNTvA9MjYhbgDOBLmflUXx+Xmcdm5rjMHDdq1Kj+C1CSJElSo/o1CYmIkZQE5OeZeWbd/FBEzFfvnw94uD9jkCRJkjSw9OfsWAGcANycmUd03HU2sG39fVvgt/0VgyRJkqSBpz/HhKwKbA1cHxHX1G37AYcCp0XEp4HxwGb9GIMkSZKkAabfkpDMvAyIKdy9Vn8dV5IkSdLA5orpkiRJkhplEiJJkiSpUSYhkiRJkhplEiJJkiSpUSYhkiRJkhplEiJJkiSpUSYhkiRJkhplEiJJkiSpUSYhkiRJkhplEiJJkiSpUSYhkiRJkhplEiJJkiSpUSYhkiRJkhplEiJJkiSpUSYhkiRJkhplEiJJkiSpUSYhkiRJkhplEiJJkiSpUSYhkiRJkho1ou0AJBXjD16uleMudOD1rRxX0n9v7J4nt3Lcqw7bppXjShp67AmRJEmS1CiTEEmSJEmNMgmRJEmS1CiTEEmSJEmNMgmRJEmS1Chnx5KkfuZMRpIkvZY9IZIkSZIaZRIiSZIkqVEmIZIkSZIaZRIiSZIkqVEmIZIkSZIaZRIiSZIkqVFO0StJQ9T4g5dr5bgLHXh9K8eVJA0e9oRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJapRJiCRJkqRGmYRIkiRJatSItgOQNHiN3fPkxo951qyNH1KSJL3F7AmRJEmS1CiTEEmSJEmN6rckJCJ+EhEPR8QNHdvmiogLI+K2+nPO/jq+JEmSpIGpP3tCTgTW6bVtH+CizFwMuKjeliRJktRF+i0Jycw/A4/32rwRcFL9/SRg4/46viRJkqSBqekxIfNm5gMA9ec8U9oxInaMiCsj4spHHnmksQAlSZIk9a8BOzA9M4/NzHGZOW7UqFFthyNJkiTpLdJ0EvJQRMwHUH8+3PDxJUmSJLWs6STkbGDb+vu2wG8bPr4kSZKklvXnFL2/BC4HloiIeyPi08ChwNoRcRuwdr0tSZIkqYuM6K8nzswtp3DXWv11TEmSJEkD34AdmC5JkiRpaDIJkSRJktQokxBJkiRJjTIJkSRJktQokxBJkiRJjTIJkSRJktQokxBJkiRJjTIJkSRJktQokxBJkiRJjTIJkSRJktQokxBJkiRJjTIJkSRJktQokxBJkiRJjRrRdgCSJGlwGH/wco0fc6EDr2/8mG9WG+cJBue5UveyJ0SSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo5wdS5IkDUlj9zy5leOeNWsrh5UGFXtCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0xCJEmSJDXKJESSJElSo0a0HYAkSW0af/ByrRx3oQOvb+W40uSM3fPkxo951qyHNX5M8L03UNgTIkmSJKlRJiGSJEmSGtVKEhIR60TErRFxe0Ts00YMkiRJktrReBISEcOBHwLrAksDW0bE0k3HIUmSJKkdbfSErATcnpl3ZuaLwKnARi3EIUmSJKkFbSQhCwD3dNy+t26TJEmS1AUiM5s9YMRmwIcz8zP19tbASpm5a6/9dgR2rDeXAG5tNNCpmxt4tO0gBgnPVd94nvrG89R3nqu+8Tz1neeqbzxPfTNQz9PCmTmq7SCGujbWCbkXWLDj9mjg/t47ZeaxwLFNBTWtIuLKzBzXdhyDgeeqbzxPfeN56jvPVd94nvrOc9U3nqe+8Tx1tzbKsa4AFouIRSJiOmAL4OwW4pAkSZLUgsZ7QjJzYkTsApwPDAd+kpk3Nh2HJEmSpHa0UY5FZp4HnNfGsd9CA7ZUbADyXPWN56lvPE9957nqG89T33mu+sbz1Deepy7W+MB0SZIkSd2tlRXTJUmSJHUvkxBJA0qdsEKSJA1hJiF6UyJiVETM0nYcGhoiYg7gJxGxUtuxDHQREW3HIElT4meUpsYkRP+1iFgIOAz4sInIlPlBPE1GADcB+0TEu9sOZiDLzIyIDSJinbZj0eDn51TfeJ76Luug44iYPyK83tTr+KLoZXJvFN88k5eZ44G/A2sCa0XE9C2HNCB1fBC/KyLeERHztR3TQJWZjwLHA5cCXzMReb2ez6OIeA+wE/B8uxENXD0XjBGxQEQs0nY8A1nH59TnI+LLbcczEEVEdJynURExd9sxDUSdiVpEbAkcDIxsLyINVF5cd6gfMJPq7xtExBYRsWhmTjIRea2OD5nHgGWAb2OPyGtExIIR8Yv6+8rAH4BDga9GxCqtBjfAdH5pZebDwDGYiLxGRCwREWvUz6NRwNeBFzLzT/V+P6N66ektorz3zouIA9qOaSCLiA9RGpVOajuWgagjAdmDMrXsORGxi+PYXqvjPH0KeDfw7cyc0G5UGoj80pqMiPg0cCSwCvCPiHiXichr1S/3rYDdgB0oi09+DPiAPSJFZt4DvDsiLgTWBdYH9qSUG+1sIlL0tC5GxDoR8dWI2IvSanYEJRE5ICLGtRvlgDAKICJmycxHgF9SXl/bAtTPKEtFOkTEksCOwKbAOsAGEbF/u1ENTLWnaBtg/tojaWI7GRGxCbB2Zn4UuAdYPTNfbDmsAaGj57Hnc2h1YA/qmnQR0cradBq4/IABImJeeOXCek3g/cBamfkFSjfixRGxnIlI0fEBszTwh8y8PTO/CNxIaZ3doNt7RCJiJEBmLgVMoCRqd2Tm3ZSFOq8AdouI97cX5cDQ0Vp9CPAPYG3gNGD2zDwMuJrSIzJbt15k10TtMuAq4OGI+Fhm/gzYC9isNgi80gKpVz7XvwjMDTxR33tbAetFxMGtBjcATOa9dDdwIvBYROzZUxnQ7d95k2lUex74UUTsC8wGfKLut2jTsQ0knaVqwEIAmbkd8L/AbyNiusycaCKiTl394QKlVhj4VkR8sm76GPAuYMWIGJ6Z3we+BlwbEcv0lGt1m15fWMPrzyuABSJicYB6wfg8sHLD4Q0o9cP4pYhYsZbzrU/5gv8FQGbeTikP+SvwdIuhDghRZsRaE9gSmBGYHrgf+E1EzElJTnbNzKe69SK75+/OzKeBbYHjImL9zDwDOAH4dERs02aMA0Gvsr6HgF8B44HNI2K+zLwN+BSwfjdfNPYa2/DZiPg6cCAlyT0OWBj4UkQM69bvPICImA34UEQsFBEfjYgNgTmBfYEVgfXqZ/0Xge9GxAzd2lDS8XraBfhhRHwvIj6XmbsAf6FUlUyfmRNbDVQDSldnpBExZ2beFxFXAP8TEQ8DXwYOonzA3A38IzOPioiXgK588/T6wtoGGB0R/6JcKE4CNoqIGyglNPcBR2bmM60F3LLasr8epZxoe0oPyPsi4i8R8dvM3Cgzb4uIYzKzqwcV157H5YDvArMA+wMfBZ6hXBD9Hnh/Zt7ZWpAt6ihVW57S6nprZv46IiYAv4yILTLzrIgYDtzVarAt6zhXH6I0hMxAGYN1HLARsElEnJmZt0bE+zPzuTbjbVkAWUuPt6CUYd0GPAT8FHi5bv8c8IO2gmxTRMycmU9FxOzA6cDswNKZ+XJErA88R0lQ3gl8GtgyM19oMeTW1STt48B6wG+AmQEy81MR8UvgT8DKvXpN1MW6tiek9oD8MiLWogyC/TulW3VNSgnWcGDTiFgVIDN/lJm3thVvmzoSkB0os/H8AziZUuZwQt1tJ0rpw1cz89424hwoIuLtlIvprTPzL1EHLWbmqpQE7vx6u9sTkMWAvSklfT0J7RWU5HYpymts125sOespAakX1R+hlKetA1wdEeMy82zKReI5EbFhZp6emVe2GHLr6rlag5LQ3g0sAFwAXA/8mjJAdrP6fuzKi8WIWCEiFqtlVtMDy1M+u9cG/gickJkvZOa5lNKs09uLtj1RxsccW28+TPk8uhJYrG7bBngA+B/gPcDmmXlj03EOQLNSyq82pSSyuwBExJjM3JLSwGTZqF7RzT0hzwCnAl+itGicWLdvQbkY2p8yOH2diLiqm1s4avfy7JTeoc0pidrlwHm1xvNK4HvAzJn5ZHuRti8ilgP+DdwBPFjrX3tmXJshM8dGmSmrq0XEuyitrM9n5r/q5gnAIsDRlC+rT2bmFS2F2JqIWIYyBmZHYH7gm5SJDZagXDCeEhE7Zua5EbEx5bx1pYhYEFgsM/9YN30Q+HlmngScFBHfobTIrkJpNLmlWwcRR8QMwAbAKhHxhdob+yhlZkOADWpp0deAmzPz1NaCbVlm/jvKVMWrU3qIFgM2AXaPiJMz87KIOAm4HRjejQ0lnTrK9sZTetIeqo1uRMSuwOIRsVtmPtBmnBp4uq4npKdes14sPwk8Rak5XykzTwAuo1xor0VJUI7uxgSkV211ZuYTlIvr4yiDOz9YE5C9KIP4J5qAxPsoyew4atJWz8vEiHgvpWZ45sz8W5txtq2WYG1NKf2YMSLWjYiZsswmtiNlnZD1MvP/2oyzDRGxBPBj4E+Z+ThwM2VWtYWAr2fm3MBZwO8j4n2ZeXZmnt+NdehRBkwvRRlIPUfd/ADlvQdAZu5F6RWZKzPPzMybGg90AKjlLy8AR1EmevhmlDUu/gKsAHwHmBgRmwIbAte0FGqromMQfv3O+wBwNqVU9GeU78BtIuJISqnf7N2YgETEfPHqekVbUhaXXYkyzvEs4G8R8ZEoM/dtB/y4G8+Tpq7rekI6Sot2pQyEPRZYCfhKRHybksXPAHwEuDjLmgVdpdcYkPcC0wF/Ax6kDMr7Ui192JSSkPymrVgHiiiDXPcGDsnMS6LMDnZIRIylDNbfEtgnM59tM8621fP0eWDP2tq4P6Vef2JE/CXLDEZ3txpkS2qJ6D+BT2XmryJiRsp77VsRsRHw57rrHyllIC/3PLYbyxtqy+sF9b12akQcS7lgPCcibqGMJ3oHsCylTOSx1oIdODYD5qG07P+A0hv5Fcosa5Mon+9bZ+YtrUXYkvq919Nr/THK9/9XI+IJStXEFrzaS7sZsF9NVLpK7X3cE7gsImaijKM9i/Le25pSov0+YGfgUWC7zLyhpXA1wEUXfnf1tPIfBZySmf+IiHkoHyobUsaD/BWYrdta9nsPFouIL1AGmd1CmTFsc+CzwNspX2SzATtl5vUthDsgdAyG/TCwD6V3bevMfLr2jLyLUgZyWWb+qVsH5NX33NyUC5/RwM49r5uI2Icy3fPPgQu68fz0iIirgWsyc/uIOBMYn5lfqq+v7SjrEqwGfKEbS9UAanI2tpbELEkZ+zEf5fPpm8ATwOGUpGMp4KDM/F1L4baq9jA+V39fi1Kvvzrl/bYqZVKIHShjZOYEJmZdI6RbRZnd6XPARllmU+tZnHAz4DOZeX1EjMzMl9qMsy31/bcz5TpgEcr766aI2IyS0O5XS0VHANgDojfSFUnI5C78IuI4YNbM3KLeHkcZ1/AQ5SKy6wYNR8RctQSkZ4XvAzJzvSjTD340M9eo980NzAs80o09RfCa5GMe4LEsM6aMpcyS8hBweHbxDGE9JpPYrkSZ3vJ84JzMvK9uPwA4q1tbzKJMB/5y/f0ySu/sYZm5f902N2X9olUoLbS/by3YlkVZ/2NnykDz0ZSW6ccojUjbAt+gNCTNQSnDuqMbk/+IWJbSy3hGZt4SER+kfLdtWxsFFqc0CkwEdsnMO1oMd0Con+HHAutm5sNR1nH6D6UM64vAh+u/l7LLpi6uJY/T1fOyPKVUbWPgIuqK6FEWcvw+pZGpKxN/TZshn4T0Ki3anFKC9hCl1vrrlAvpvaMM8FwT+EaW1Yi7SkSMpoz3+F5mXlC7XDcBFqS0lvXMh755Zv6qzVgHiijT8B5IGaT/XGbuV3s/tgCepZRmdW35Vc+FdZTZndYHXqTMRDcHpSTrYkrPR1fPptajVyJyIfBkZm46hX277qK6U0R8htJodHZmblW3zQl8iJKgHNPNn1NRZgBbkDLe8Z+UcqLnKBeMR2TmiXW/wyhTq3+3G9+Hk2kkWRb4AqUkdF5KWdEEYN/MvDQi3paZXVnWV8fyrULpMZuespTBJsCSlJnDfl2vETYEbsgunVZd02bID0zvSEC+TJlZZnZKl/3qlKkcx0XEecC3gOO6MQGpngXOBD4fEatRZg/bAHgvpVXopSgLOu4RZQrarhZl1pRvURY+exjYISJOyMzLKdNazkkpEek6ETFXRMxSE5APURb7/CmlPv+ILAPzf0lJTD4Sr1+RuCvV89VTwrA2MF9E/Kbn/tp63bNv1yUgnX8/ZbHPHYDn6lg+MvM/lKnWj6bMWtSVImIpyriiO4CvUmZV25Yy1nF3YIuIOKQmcisD3+rSBGR4x/XBclEWlr0BuJHSUPKLzFyRMiX9ygDdmIBExOjaCzKJMunKlpSZMR+jfI7fWbdvExEjskyWYQKiPhmyPSG9ekDmAo7KzE9GGQj7PsoFds/c8nMDk3pKkbpJr/PUM+BuFKU1aAbKILM/UMZ/rAZ8Irt8PvQos4J8kLKexQKUcUTbU2bGuiYzd4iIObp00OISlBbq3WsJyK7AJZTa4b2BrTLzrrrvB4DHM/OadqJtV2fPR6/tr9SbR8Q1wP2Z+ZGm4xtIOsof16JMW/xcZp4REe8G9qBcCJ1N+fz6breWicIr04Q/QPkcf5IysciBwK3AOZSLyS9TxoEcl5nXtRRqayJiRWCpzDw5Ij5H+b67i3JuPtHz2V3HOewPbNYzPqSbRJkQY1/Kd92clAkxDqFcG/wqM6+qjQN7AzNSypCfaiteDT5DPgmpNZ63UAa9Pk25mP54rV/cBriq2y+q4ZVB6JtTLqRXolxc706ZgWccZVDxed1aN9zxehpJSVhfrgP0jgVOrQPxvkupS/9YN45tiLJq9/eAxylrDywJfIzyxfUSsH1mjq9fbEtQxjwMzQ+gNxARswET6mfQapTa/LuAS7OuYVFbFCfW399Xe9i6Wi1//DawH2Ua5+9n5iG1hGY/Sq/trpl5XothtqZXg9KMlNr8R+rPmYEDKD1EP80uX68hItahlGP/EliGUm71cEQcD7yTUpr9Pso527NLP8/XpEwXviXl82lWyjTFV1HGyCxKqQaYBxgD/LkbG3L15gy5JKS2xD5fL3beCZyUmavWcqwdgC0z858R8SlKa9A63dgV3am27P8AOD4zr64DP7ekDMD7Wnb5uhY9aq3rJyg11D/PzDMj4n8p8+4/SFlFd7/M7OZSkHdTVql+mZJoDKOsRXBRZu5av9h+RLlYvLC9SNsREbNTWg1vprQu/gg4g1KadhLwm57XT2ci0u1qCejPKbMWLUGZhWcRyuf7HnWfMT29bN0syqrxt1BKij5DKa39EaWl+jDKdOtHZRfO7tQrUfsQJcmYSGkg+XfdfjZwfmb+sMvHgOxPGZf2gygL7b4QEQtRyo3vBv5EWRl9DLCG7z39N4bUmJDawrgtZeGc+ShTNT5X7z6P0sp/akT8gJKAbN6NCUiv2uqe+fbnBHattx+i1FbPRlkhdqbej+k29Yt9X8oF5FP1J8D/UQbrfYXSI9LNCcgwSi/ISMqFz9K1Tn8DYLWI+Dml5Wz3bkxAqucoCesKlJnUdsvMfSmfW4sBa/fs2O0JSM9nTpQFPnuS/BkpDSMrUQah7x5lVXS8CIKIeBtljatvUt6Lx1KnUqcMsP4yZaxD1yUg8JoxosMz8wLKBBkjgffXsmwojUoj6/5dl4B0fNePplRAAEyo52w8pfR4dsokB/sBH/C9p//WUOwJeR/lQ3gG4Fxg7azTXNb7V6GUhjxU31BdpVdL0EeA4ZQxH/NQSh3uzsz9o8wWtjrwzW4crB9l4bgFMvMf9fYnKBePs1MWatoqy2J7PS1Es2XmU53nt1t0lKqNyLI6/KyUUobDKWUOv4uImSnvyRmyTsvbbSJiWGZOijJz0daUSQ1uAL6cmc9GmezgSMqX+n9aDLV1Ha+p9SlrE21Z31+rAttk5k71s35z4NwuTmpfJyJWoEzNuwClcWROSvJxJ6UE8nXjkIa6iBjV8z0WEZ8FxlIak04CZqI0jtwNXEdZgHfrbi/TruOv9gX2rmM/hlGuF+alfE59KjOfbjFEDQFDYsX0ni93gMy8PCJepMwdvz+wSpRVPeejlD/cl5mHtxdtO3paNzoSkJ5ytMcpg6x/A3wH+H5EnEupi/1YlyYgSwKnAYdFxB21NWxWSinIC5RBivfVsQ3r1lK/p6E7Zy2qF4sbAZtExAzAD7JM83wIcHBNTn5DmYGtK9WL6km11PHxzDwhykrMa1GmdD6BkuQ+A3R1ryO88ppag9Kiv3vHYNeXgNkj4mhgPcog4r91Y/LfKSK2A96bmZ/NzGsi4mVKSe2BlKlUDwOe6tIEZFHKrI/fpoxR2wzYDTgC2CEzd4mIr1DGPzwEbNCtDSW9/A24DNg8IsjMq4BJtSH3bQyR60e1a0j1hNQ3x1OUetgFKYsLLQn8gjJbyDBKS/8trQXZkl4DXdejzKW/IeWD5KD687Ta4jGKMvi6G7uiF6HMsnNkZp7QsX0k8FtKOc02lIXjjqS0YnftwnEAdXD1dykLV50AJCWB7Zn8YV/KzGqPdeOFYker/kcoM6ndR0nIPkO5KPokZd795ymzFZ3VWrAtquM+5svMf9bbnwGGZeaxETF9Zk6o21ehrNb8RGb+sb2I21Pfc8sBt9eEfz7KeiCnZOaedZ/Ngb0otft7ZJctrtcjInoWZTyFksReSBnbtx7lOzAoaxitSKmQuLulUAecWhHwGcrChJdTztOmlJ7Ja9uMTUPDoE5CepUWfZ7ygfsXSpbe0x29HTAXpayoK1s3aq3rlcB7MvPxiDiQMq3l2pn595p0fJFSkvWTbh6IXi8UV8vMfaOs2bAysDylnvoEyhfZJMpF0JHZhTPxRFnX45UVgyNiJ0oL4iRgH0rr9F1R1gp5JiLmz8z7Wwy5Fb0unJemzCyzC3ANZZD1hMzcopb6rUF5Pd3Ura36EbEDpeX1bkqP427Ahpm5esc+qwIPZpfO0gcQER+mXFSfTFmDZ/3MPC8i5qGsaXFmZu4eET0z032rjvPrKrVB6fHMfDIi1qbMhHUf5UL6vszcuO63M+Va6EetBTuARZlpbRxloppHgd9n5q3tRqWhYtB2p9XBis/W3/+HMs3e+zLz/og4Bjif8qY5mdLS2LWDPDPz0SjrNfw1It6bmQfXspl9IuKrmXldLW/YiVI33M0mAp+NskjcFykDFGen1FWvk5mb1trYObILpyOspWrfA8ZHxN2Z2TMAdgdKydonawKyJfDB+gXfddOBRlnc64cRcXRN6icAN1GmBJ8AfDQi/lQbT34MXNYzRq3bEpDaCLJoZh4XZU2nIyif2z8ClogyA93ulDr+n1Jea12ZhERZW+cIYKfM/GNEPAMsGhHvz8zLIuI9wOURsTDwbuAjXZqALA78Crg1Ir6UmRfW99o2lFLjC+p+21PWCPloa8EOcJn5PHBp/Se9pQbl7Fj1QmiriJg+IuaklIIsSVmUiczcmfKF/zdgPPD1bvwg7pSZ51C+yK+KMk3o/sAVwFcj4j31/Hwju3iRL4AsM6YcQrnQHk6ppd4wy8q500XEPLUHoOsGDkeZ/vpkyoxg5wAbR1ng8lJgFkor9ou1VGQ/4IzMfKnbLqqr4cD1wN5RFkZ7jDIubcWOfU4FXs7MidmFk2TAKzOqbQV8KiI+SJnR8AlKucw4yuQGcwC/q7/vnpl/aiPWAWJj4N6agCxM6f1/N3BcRBxSG0bGUdbAWK0bS4+rOykrn68KfLv2cAelIuCHwEq1oelTwKa27EvtGJTlWFEWp7qfMkvDfygtsD+kDK4+pWfGhog4EvieNZ6vqh/G36d8UT1F+bJahDLt3otdesEIvK68b+7MfLTjvrUoM6hsmGW60K4SZfrr8ykLUu1dt20JzJiZP6n1/N+mrA+yEKW06HfdWloEr7Twf4Iy+HxX4F2U99vxvFpu9MXM/L/WghwA6niGrSkroZ9GaTw6kFJWe0pm/iPKjGvT117drntNRcfkKxFxCmXc1dLAiVnWcViW0kv03cz8VYuhtirKOhYzZOa/ahnyrpTG1nspU2C/n9I48LnMfCnqrIbtRSx1t0GThPT+4qnlDt+ktJodQUlIjqYs/PWzzHyyhTAHhZqIHE4pX3siunhBJnjNwOGgvCcmddz3Nkrr9aHA/pl5bltxti0i9qKsiXJYZv4lIo6gtMz+k9Krdnn9PWoddtddLPZWE5FPUlZg/iywMGU2uoUoE0Fc0GJ4reqV9M9LGb83mtJDdDmlt/adlKTtsm59LfVKQNalNLx9gjIwfUPgmfr5dShwf2Ye1V607YkyDfiRlIqIszLzNxGxLSXhv4CS5H4HWBc4NjN39jNKatdgSkJ61iDonOVpZUot5wuUBGQeysDhYyirfw+OP64FUdYBOQAY163nqSP5mKsO2B+emS/3ujhakVLu993MPKcbv7R6XQTtQRlEfQvlYvpAyniHL1Eujg7JLp9fv7deicjemXlz5zntZvUzfEbKysxX10R3Qcog4r8BX6Uka13/mooyK9gewBaZ+WJEnER57+1OaQzYD9goM29rL8p21R7ZtSjJxjeA2ykzQX4zy8yP8wI7UhZs7MpxRdJAMiiSkHj97E7TZeaL9b73UqaMe4aSfMwJPG8J1tRFnb2o7Tja0JGArEtZ/+Nq4GHK7GDP99p33sx8qBsTkB69EpFdKF/sX83MM+q2EcAsmflEe1G2LyKWB57LzNt6NZj0lGatRlnx+/o242xTx3tvFcosYedSErRTMvPQmuguDpycmZe1GetAUMfNrAT8FdgnM79Ttw8HjgOWoCy4t1Vm3tRaoANIHaD/bcp0vKtSJhf5dGbeYQOANHAMioHptTa/Z3anOWsr0Mh6398pU1+OArYFbjMB6ZtuTUDglcXQVqIMPN+DMrva6nQsFFfLs8g6qUE3JiAd52BSveghM39Ama5464hYMyJG1sHVT7QY6kDxacprip4EpP7+CGW8wzWU8Vhdq7733k9pvf9UZu5CWYdg5yjTPR9Dmaa3q0tEe37PzElZZlj7DrBvHZ9FloUHd6CsA7KFCcirMvNqyqDzxynjQf4H2LAmdF33OS4NVIMiCYFXZnfaDbiyJiIvRcR09e4RwLXAT7MLV4RV30TEInXmph6jKV/sc1Jq9PfKzOci4p3d3OsBr7kImrFnWy1VG1F//x5lTYJ9gZmbj3DA2gt4KiLGwesuJh+gzCLWtUlIvQiEsmr1ZymDz3sS/e0oq34/Qyl/vLmVIFvWqxx0s4j4fESskZn7UMbHXFPHqpGZL2fmfunsTq+TmfcCJ1HWLjoeOK8mdF37uS4NNIMmCQHIsjL1LryaiLxYS0NOpSyg80i7EWqAWxE4OyLWrLfvpVxEnwCsl2V9i/Upr7EZp/AcXaG2Vn8YOD4ido+Izer2iT0XklnWCNmp23tAIuJ9EbFRRIzLzBcoC3qtBK/2nkXEsJrATaIsNNdVOpKxnovnL1LGWu1Z6/ihzHI4JiJmoqxs3ZU6XjO7U0pFRwKHR8SmWVZDPx24M8r09HoDWaYIfzozdzRRkwaeQbdYYWb+viYef4qIEynd0ZvVVg9pijLztFrGd3xE7AhcAvyekowvEhHvpAxmPCAzn2sv0vbVHqMjKFM3HwzcFxFnZ+aEntKs2gr773YjbV6UFYTfm5mXRMQ7gC0oycXSEXE+pYfoKxFxYc8g4VqDPikiDujG3tqa1K5DWZfoX8CtlOmKpwcujYgzKDOHHd3t7z14ZQzRspm5ZkR8EXgEOKeOM9orIiZQErquW69I0tAx6JIQeCURGUZZMO3dmXlt2zFp4OoYCDtHZv68tsr+mLJ67v9Spmz8HmVl769ml86CBa9psV4c+DLl4vptwA6ZOSEiRmfmvd14Id1hJPC+iNgHeDuwVmY+Vlv0v0oZn9azYvVtPQkbvFLH33WizDK3NWUGp1ko6zUck5k7RkRSJhfZMssMWcO77TxN5vPmubr5XMoYhvVrL+R2EfHXzDygnUgl6a0zKJMQgMw8t87u1PWtZpqyjgRkJeCAiDgsM39WL7ZPogyMPToifkJpsH2uWxMQeE0pyAOUOfcnAGtn5sMRsQGwTEQckXV2um5Sez22ycyDImI8ZbDr77OusZOZD0bEFyiTGzwP7BcRZ3YOUO9GETEX8BPgzsy8uJalXQ8cHBErZ+b+ETE78JOI+GB2LBLaDXqNAVmBMtPjA8CllJ7I/WoCsi2wJ/CRtmKVpLfSoBoT0psJiKamY2zDl4H5gBMiYpXMPAU4CDgjItbOzGd7Xk/dloD09H5ExMoR8eko01veTylXOxd4qSZx3wSu78YEpBoP/CEi5s7Mn1MGV98fEUfXMj+A2TPzxcw8GLiD0qPU1TLzcUqZ4+oRsWWWmdTuooz7eFfdZxfgj5Rekq7SkYDsRZlZ7VuUUrWHgPOAQ6Oskr4n8PF09kdJQ8SgWCdE+m9FxMLAbyhzxF8dEV+hLGZ1QGZeVlsXx2fmxW3G2baIWI8yU9jJlPUsvkupQ18VWAd4AvhBZv62G3uK4rVrftwKXJmZW0XEEsDelPNzJrAlZQHH0ZQF9z7UbePVOnofxwFzUHpA7oyIjSivq58CfwBOBL6QmZe0FWubevWArEL5TFo3Io4D5sjMzWoP0TyU83h/Zt7XXsSS9NYyCdGQFhEzUy52DsnMa+q2n1AWjds460rM3Xhh3SMiZqXM2LQvsChlnMzqtQWbKNOBTsrM/3Tjeeq4qF40y2JnIymDz/+ZmdvXMq39KOVZu9VS0VGUz9eH24y9LVEWAf0+JeHYA9i0lmJtUrddCuyembdGFy4e1ysBWZAytmhj4EVgZeCjmflC7bX9a3uRSlL/GdTlWFJvHaVFM0fE7Jn5LKVFf8WImKfudgLwIGWWrJ5FL7vqwrpHRLw9M58G7gQOpZSDrJ+Zj0fEBhGxbGY+lpn/ge48TzUBWQ84NyLelZkvUabgXTEiTsjMOzPzM8AHagISmflIFycgiwOHUMYuXEUZV3RcRGyQmWdQBqHPDSwLr8wc1lU6EpDNKL2PzwHLUXppN6sJyOeAb0ZdnFCShhqTEA0p9YJxQ0oJ1nkR8XngbGAjykDhQykzYX0GuB1YoK1Y2xYR81POydzAfcDSwMGZeXdEvJdSOtP1F0ARMZbymtkiM6+LiAVqIrICsFpEnFp3tVQGyMx/AR8H5gW+lZnzAz8EzqoDzy8Avg3sFhGzdczI1lVqr9Cngc/UHtlLgWuAr0fEHpTFHD+fmU+1F6Uk9R+TEA0pEbEcpSZ/H8pCXx+hrIa+K3A5pdxhe0r5w3soLZDd6jnK6t3rUxb8vBT4ZET8gjKb0R7dXgpSS61eprRWLxplAbnzIuJnwCLAMpTytVdat7uxt6hHT0KRmbdTSvuuqHddCfyJMvMTmXkm8OHMfKpbztdkkq1JwNqUKcKhlK+dTemlHUnpEbmxuQglqVmOCdGQEhErA3tl5sfq7THARcCXMvOcum01Sl36RzPz+rZibUstSxuemQ/U8/X5+m96yiDYBSmDYK/rxjEgPSLifygJ7VHAh4ElgeMpPWifBC7LzF/Xfbv2PHXqNdZhdWAnygryq1Ba9f/ejeeq13mZFZiYmc9HxOaUWfoO7Hkt9d5fkoaqQbtOiASv+3IP4B5gQkS8G7g1M++KiGMoF9g9/gl8sE4T2lUiYj5gf2DxiDiCUkL0NPCOOnD/EeCV1tduvRCKiMUoJXvfysyLIuJS4IV64bgkZRD66T37d9t56vW+m53SoPVEr/NwBTAjpbftK5n5d+i+cwWvGQOyB+V8LBARu2fmr6Ksfn5gRIzMzF907i9JQ5k9IRq0OmYt+giwBqUV/0BK6+v8lIughyn159tl5qXd2MLYcZ5mycxn6mxX7wV2AK4GdgP+RlmD4Jk2Yx0IImI4pZTvU8AFlAvoiVEW2VudMuj60Mz8TXtRtici5gXelZkX1lmwDgSGU6Yo/nGdRe11M1516XtvLOXcXAdsSxkr8yHgYmBhYIfMvCAiPg58kTId9jPddp4kdSd7QjRo1QvrVSgzOu0JrEcZTP1tyiJxy1EuGj+XmZf2PKalcFvRkYBsAHwqImYEfgGcA/yVMkvR/JRBxAsBN3XpxWLPeZoHeDozj46IJyjJ2sYRcUZNRMZTBhLf0I3nqdoE+J96rragJGyTKMlZUHqPXjfjVbedqzqj2jeBI4DHKN+32wFfooz7OBU4NSK2zszTIuI8GwEkdRN7QjSo1HrqkfnqGha7AfNn5p719pcpK1mvnpkTImKGzHyhvYjbFxHLUEqHtqKsUL0EZYDwDzPziYgYBhwNPJaZB7YXabsiYn3gK8BdwPOUcTKfBsZQeox+2Y3TyU5ORHyJspDljJQ1QF6og/gvBPbOzNPf6PFDXR0PcwKwVU8ZWt2+MGU82oa1V/KvwLP19vPtRCtJ7XB2LA0aUVan/jnw2VqXD+WCcdbaKktmHk4ZF/LOev+EpuNsW0QsHBH7dWwaDdySmVdn5onAucCalAHoPes0XAcsERHTNR3vQFDLZvanrGFxEWXMxwuUgej3UAZWz9tagANA5+xOmXkkcBYwM7BORMyZmXdSztdM7UQ4oIwFjq4D8Ud2bH8EuBfYJCK2obzvPmMCIqkbWY6lQSEilgZOAo4Bzsy6eB5l3Me2wOYR8XdgIqW1/0XovhKQ6kVg59oLdCDlQme6iNgwM8/OzMsi4g7KuiDX14ukScA3MvPFFuNuVK9yqheBI4H3U3o/PpiZkyJiEcrsWKMz84F2Im1fRIyo5Wgfpry/JlHO14zAhsDKEXE5ZTD/Z1oLtGUdr6lFgCfr5okdu0ykvB/fT1kZffPMvLvZKCVpYDAJ0YBXS7COBo7JzBM6tm8D3A/sTCmjeT8wH7BnZt7WRqxti4ieqXffB/y+3t4/Is6nLKy3HPBHysrMxwJkWXjvuPaibkcdA/I/wKzAHcDXgKeANTLzuYhYA9gX2CYzx7cWaItqD8d/agLyEeBgyviro4H5MnOPOpB/J0pCsl3P+Ktu1JHUnkVZCHRsZl5VSx4jM1+MiAR+QClbe7y1YCWpZSYhGgyep5QwvFJnHhHbAXtRSj++kZm7RMT0wKjMvLcbBw3Xv/nliJg+M++rrdbnRsRzlIueVYBtKIP2d68XR113nnrpmbJ4RcqF9T7AinV8w5eBfTPzoRbja01EzEKZOvbvmXkqZa2ULSgLND5BeU2RmcfWi+y/ZuZ1bcU7wPwduIzSQ0tmXgUQEVsAnwB+ZQIiqduZhGhAq3Xos1BWN1+Vslp1UGrRVwVmAM6IiAtqa/W90J1lWLVl/4PAphFxI/B7So/H/wHDMvPrlN6RmTPzWRMQqOs0rACsnZk/jIgZgI0pvSO71+lTu/k8PQ8sT5nJKSg9jqOBT2VZg2czYFJmHtNijANOfX8dRyntOyIirqCMMdqUMpD/3lYDlKQBwNmxNChExE6U6VJ/kJlX1zKjlyPivcABlIuiR9qNsl1RVj//LnAasBQwEvglcA1lHZCzMnOv1gJsUUQsQEk0ToyI9wMfpcxedCuwJaXk6kMd+79unYtuERHzAzNn5m0RsSBlrZRvA1cC/wB2ysxT6vTYPwF2zMw/txfxwFWnxB4LfBB4ALg4M//VblSSNDCYhGhQiIhRlPn130a5yP4zZWDn9ymLyf2+vejaV8uHfgEcn5nHR8TbKQs4/k9mfi4iRgOLdGu9fkS8G3gJGE8ZVP09Ssv0LMAuwK+B32TmsXX/ruz9qCVYp1CmJf50TfiXp4wZ+hxlQdAfAX8AVgIOyMzftRSuJGkQMwnRoBFlpeaPA58FrqXMQNO1K1d3qknI9ynT7q6ZZdXqeSkJ286ZeXPdrysvrgEiYibgV8D/Zeb3I2IO4BuUcSGLAv+mzFbUNTOETU5E7E9JzE6nzOT0KDAXZSD6NyJiKcpsYtNl5s3d/JqSJP33TEI06NSL65eBngHYXXcR1PM31/VSZq/rEcwBfJ2yCvoewHTA2cBmmXlLe9G2o/b+vIcya9OjmXlRRKxJmU3t6sz8dt1vHGVg+r2ZeU5rAbeo9jQum5kX19vfAmYHfgesByxJWePi6Mz8S2uBSpKGDJMQaZCqU6b+kFJiNJFysfg2SqnRqpTZeY7OzMtaC7IlNTn7NXA5MAdl8cFjMvOgiFgN+CJwVWZ+q9fjujGhHQnsSnn9XJKZX69TOa9FmdzgXsrMYR8HHqIkJBO77TxJkt5aJiHSINLRAzKSskjj1bVu/wzKbHdbUsY5fAlYMDO37nxcW3E3qS5seQzw08z8ad32TsosYSdn5oERsSplDZDLM/OQ9qIdGGpPyIKUxO0cyqrxqwFXZOavI2I6YBNKb1FXjiuSJL21TEKkQaAziYiI9YDdgeGUi+qf1O2/opRibQjMS1nzYiKwa2a+3ErgDasXyzcD12fmxnXb9Jk5oSYif6PMhHVeXajw6cz8Z3sRDyy1pO9rwHOUldEXprx+Lu7Yp2sSWklS/xnWdgCSpq4jAVkM+CRwMvAXYOWIWL/usznwNLBEZt4JfAs4qFsSEIA6qHwLYJWI2LlumxAR02Xm7ZSW/nfU3S8zAXlVRIzIzCeAvSmzX10BLA3sFhGz1vV5unINHknSW8/FCqUBrM569X7Keh/vpAwUPiUzT4qIMcBHgPXrBeRvelr/ATLz3y2E3LrMvKKOl7mwrlZ9DGUiA4AnKa38AF5Md8jMiXV9lBeAPwF/iogngX9m5tMthydJGmLsCZEGqIhYAjgTeC4zX6rT7J4NfCwi5snMuyhJyb+ADSJiVE9rdbfLzCuBtYFvRcTn6sKWqwIbATfWfboyCel5jUTEqhGxS0S8v64rQ88CjRExrN7+XmZe4utKkvRWc0yINADVwdX/S+n1OKGOdVgmM/8ZET8ClgM+mpmPRMTCAJl5d4shD0h1+t3zKGVYywPf7tZpeDtFxLrA4ZTZ1XYFjqLMHtaVq8RLkppnT4g0wNSZr86mDJo+ISKGU6ZKXQMgM3sWa7wwIkZl5t0mIJNXe0TWA7YBvpuZ53R7q35EzErpEfoIcDVl5fgzM3NSTXYlSep39oRIA1BErAicS5mpaBXgwcz8cq99vgf8OjP/2kKIg0pEzJKZzzizUxERX6H0DC1EWcxyfERsBDyQmf9oNzpJUjdwYLo0AHUOrgZuycyteu6LiJWB5TNzt9YCHHyebTuAtnSsLTMfMF3tNbuN0htySE1AVgS+A+zQZqySpO5hOZY0QNVSojWAJSNiB4CIWAU4DrizxdAGnZ7ej27sBakJyAbAH4GTI+LQzPwVcD6wRUT8BvgJsEdm/rnFUCVJXcSeEGkAy8xrI2Jt4LyIWIEyIH2fzLyw3cg0kNWpdntmuloM2I6yvszdwBUR8VJmfiUiFgQWp5Rh3WS5miSpKY4JkQaBWi7zR2DrzPxNy+FoAIuIeYFNgWOBOYEfATMD22bmQxExF/B34KLM3Lm9SCVJ3cwkRBokHFytvqjrywTwOPAEsBbwWeAXwB8z8+GIeBvwT2Bd4Gan5pUkNc1yLGnw6NrB1Zq6uuDgDpn59Xr7B5TV4b8CTAdsBmREXFJ7RN6RmRPbi1iS1M0cmC4NEt08uFp9MgpYPiIOrbdPAUYC+1MWbPwVsDnwgboWjb0fkqTWWI4lSUNAXdRyWWA3ykDzfSPiPcC2lNKsb1HKr+7OzGtaC1SSJExCJGnIiIhhwLuAL/FqIvJuYGfgEeAAe9IkSQOBSYgkDTF1OucvUBKR/SNiLPB8Zt7UbmSSJBUmIZI0yNUekMjMlyNiVmBuYHZgX+CuzNy71QAlSerFgemSNMhERNSfc0fEiMycVBOQ0cAVwDvquI9DgZ+3GKokSZNlT4gkDUIRsT6wFzCR0uNxE2Xsx4uZ+f02Y5MkaWpMQiRpkKmzXh1KSULWAVYEfkxZePCeus8wFyGUJA1UlmNJ0iASEfNRZr96ITOvycxDgYuBHSjrhMwAYAIiSRrITEIkaQCLiHdExOcjYpuIWC8zHwAuAWaLiO0BMvMHwF+BnYBZ2otWkqS+sRxLkgaoiFgaOBs4F3gR+ASl7OpnwKrAasBfMvOkuv/CmXl3S+FKktRnI9oOQJL0ehExO3AMcEhm/rRu+z7wUyCBQ4BJwLoRMTwzfwKMbyteSZKmhUmIJA1ME4C7gdMAImKGzLy3lmD9DbgeOIvyOX4VgKuhS5IGC8eESNLANCMwFlgDIDNfiIjp6uxXRwOLZ+ZzwC8z84b2wpQkadqZhEjSAJSZ/wG+D2wSESvUzS/33E1JUqCsEyJJ0qBiEiJJA9eZwAPAThGxVl0VfRXKooR/BqfilSQNTs6OJUkDWETMC2wOfB64AlgKODgzf9tqYJIkvQkmIZI0CETE2+uvM2TmXRERDkSXJA1WJiGSJEmSGuWYEEmSJEmNMgmRJEmS1CiTEEmSJEmNMgmRJEmS1CiTEEmSJEmNMgmRpMmIiJcj4pqIuCEizomIOfr5eDtHxDb19+0iYv7+PN7UjhMRK0fE3+s5uDkiDurveCRJ3cMpeiVpMiLimcycpf5+EvCvzDzkTTxfUD5zp7rCeURcAuyRmVf+t8frY0xTPE5E3Ap8PDOvjYjhwBKZedObPF6fz4EkaWizJ0SSpu5yYAGAiFg0Iv4QEVdFxKURsWTdPm9EnBUR19Z/q0TEmNqL8L/A1cCCEfFMz5NGxKYRcWL9/aCI2CMiNgXGAT+vvRAzRsRdEfHNiLg8Iq6MiPdExPkRcUdE7NzxfHtGxBURcV1EfK1u64nhuIi4MSIuqM/5uuP0+pvnAR4AyMyXexKQiJgrIn5Tj/G3iHhXZ/wdsdxQjz25c7BXRFxfz9Ohb3ReJUlDk0mIJL2B2guwFnB23XQssGtmjgX2AP63bj8K+FNmLg+8B7ixbl8CODkz352Zd0/teJl5OnAlsFVmrpCZz9e77snM9wGXAicCmwIrAwfXOD8ELAasBKwAjI2I/6mPXQz4YWYuAzwBbPIGx+nxPeDWmljtFBEz1O1fA/6Zme8C9gNOntrf1HkOgKWBjYH31nP1nbrPlM6rJGkIGtF2AJI0QM0YEdcAY4CrgAsjYhZgFeDXpbIIgOnrzw8A20DpOQCejIg5gbsz829vQTw9SdD1wCyZ+TTwdES8UMerfKj++2fdbxZK8jEe+HdmXlO3X1X/pjeUmQdHxM/rc34C2BJYA3g/sEnd548R8baImH0qT9d5Dj4I/DQzn6vP8fhUzqskaQgyCZGkyXs+M1eoF9i/Az5P6YF4IjNXmIbnebbX7c6BeDPQdxPqz0kdv/fcHgEE8K3M/HHngyJiTK/9XwZ6l15NVmbeAfwoIo4DHomIt9XjvG5XYCKv7V3v/Ns6z0Hw2nNAfdy0nldJ0iBmOZYkvYHMfBL4AqVE6Hng3xGxGZSB1hGxfN31IuCzdfvwiJhtCk/5UEQsFRHDgI9OYZ+ngVmnMdTzge1rrwIRsUBEzDOVx0zxOBGxXrzaLbEYJXl5AvgzsFXdZw3g0cx8CriLUoZGRLwHWGQKx7ygxjlT3Xeu+vgpnVdJ0hBkEiJJU5GZ/wSuBbagXIB/OiKupYz72Kju9kVgzYi4nlLytMwUnm4fSs/KH6kDvyfjROCYKQwYn1KMFwC/AC6vMZzO1BOZNzrO1pQxIdcAp1DGjrwMHASMi4jrgEOBbev+ZwBz1f0/C/xrCnH+gVJadmXdt2cw+5TOqyRpCHKKXkmSJEmNsidEkiRJUqNMQiRJkiQ1yiREkiRJUqNMQiRJkiQ1yiREkiRJUqNMQiRJkiQ1yiREkiRJUqP+H3s6S3fklfD9AAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA74AAAHUCAYAAAAdjvQUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB7+0lEQVR4nOzdd3xUZfbH8c9JAqGX0KRIUQgQQESKUhT7z94QFVnBrrhWVKyrq7uuupZ11bWLChYsrAWw4YqAXRCRDhZAOtJrIMn5/fHcYccYILqESWa+79eLVzJ3bjlzmZncc5/nOY+5OyIiIiIiIiLJKi3RAYiIiIiIiIiUJCW+IiIiIiIiktSU+IqIiIiIiEhSU+IrIiIiIiIiSU2Jr4iIiIiIiCQ1Jb4iIiIiIiKS1JT4iqQwM3vMzP60i/bV2MzWm1l69PgjMzt/V+w72t87ZtZ/V+3vNxz3r2b2s5kt2d3HLi4zczNrnug4dpXC7yURERGR/5USX5EkZWZzzWyTma0zs9Vm9qmZXWxm2z737n6xu/+lmPs6fEfruPt8d6/i7vm7IPY/m9nzhfZ/tLs/97/u+zfGsSdwNZDj7nsU8fzBZlYQJWnrzGyWmZ2zO2PclczsbDPLj17PWjObbGbH7e44Cr+XdvVNlN8i+j9esJN1GpnZ8OgGyRozm2JmZ++mEEVERKQYlPiKJLfj3b0q0AS4C7gOeHpXH8TMMnb1PkuJJsAKd1+2g3UWuXsVoBpwFfCkmbXcLdGVjM+i11MDeAQYZmY1dtXOLUi2vz1DgZ8I75daQD9g6a4+SBJ/zkREREpcsl18iEgR3H2Nu78FnA70N7O2AGb2rJn9Nfq9tpmNjFqHV5rZeDNLM7OhQGNgRNQSOMjMmkbda88zs/nAh3HL4i/O9zazL6NWsDfNLCs61q9a0WKtymZ2FHAjcHp0vMnR89ta/aK4bjazeWa2zMyGmFn16LlYHP3NbH7UCnfT9s6NmVWPtl8e7e/maP+HA6OBBlEcz+7kHLu7vw2sBPaJ9l0zOqfLzWxV9HujuGNnmdkzZrYoev6NuOeOM7Nv4lrr99nR8YFjzOyH6PXeE72GzOj/sl3cfutGPQHq7OT1FBASuspAi2jbTDO7NzqvSy10la8Yt+8To5jXmtn30f9l7P/uDjP7BNgI7GWFehFYXCt//HvJzO4ADgQejv4fHo7WcTO7xMzmWGht/4uZ7W1mn0XHf8XMyhfnfEaxXGNm30bv1ZfNrIKZVQbe4b/vgfVm1qCI09UZeNbdN7h7nrtPcvd34vZ/gplNi479kZm1jnvuF93U7ZefyYPNbIGZXWehq/0zZpZuZjdG53edmU200DMBM2tlZqOj//NZZnbajv6PRUREUokSX5EU4u5fAgsIiURhV0fP1QHqEZJPd/ezgPmE1uMq7v73uG16Aq2B/9vOIfsB5wINgDzgwWLE+C7wN+Dl6Hjti1jt7OjfIcBeQBXg4ULr9ABaAocBt8QnG4U8BFSP9tMzivkcd/8AOJqoRdfdz95R3FGieQJQG/guWpwGPENoCWwMbCoU51CgEtAGqAv8I9rXfsBg4CJCC+LjwFtmlrmDEE4GOgH7AScC57p7LjAM+EPcen2AD9x9+U5eTzpwDrAVmBctvhvIBvYFmgMNgVui9bsAQ4BrCa3FBwFz43Z5FnAhUDVufzvl7jcB44FLo/+HS+OePgroCBwADAKeAPoCewJto9da3PN5WrS/ZoQbF2e7+wZ++R6o4u6Ligjzc+BfZnaGmTWOf8LMsoGXgCsJn623CTeRyv9qL0XbA8givIcuBAZGr+sYQi+Dc4GNUZI+GniR8F7qAzxiZm2KeRwREZGkpsRXJPUsIlxIF7YVqA80cfet7j7e3X0n+/pz1Mq1aTvPD3X3qVEC8SfgNNs1BYv6Ave7+w/uvh64ATjDftnafJu7b3L3ycBk4FcJdBTL6cAN7r7O3ecC9xGStOJqYGarCUnt68BAd58E4O4r3H24u29093XAHYTkGjOrT0iqLnb3VdE5Hxvt8wLgcXf/wt3zo7HNuYQEb3vudveV7j4feIAo6QOeA860/3YvPouQcG/PAdHr2QzcC/zB3ZeZmUVxXRUdZx3hBsUZ0XbnAYPdfbS7F7j7QnefGbffZ919WtQiunUHx/8t7nb3te4+DZgKvB+9J9YQWmo7ROsV53w+6O6L3H0lMIKQ3BdXb0Jy/ifgx6hluXP03OnAqOi8bCWc04pAt2LuuwC41d1zo8/Z+cDN7j4r6mUw2d1XAMcBc939megcfw0MB079Da9DREQkaSnxFUk9DQndcQu7h9BS+X7UZfb6Yuzrp9/w/DygHKFF9H/VgF+2Gs4DMggt1THxVZg3ElqFC6sNlC9iXw1/QyyL3L0GofXtQeDQ2BNmVsnMHrfQhXotMA6oESXcewIr3X1VEftsAlwddY1dHSWiexJe9/YUPtcNANz9C2AD0NPMWhFaat/awX4+j15PzWi9WO+AOoTW6YlxMb0bLSeK7/tixrerxI+j3VTE49j/eXHOZ3HeL0WKblxc7+5tCO/Bb4A3opsFv3ivRl3If6L477Hl7r457vH2znMTYP9Cr7EvocVYREQk5SnxFUkhUStUQ+Djws9FLZ5Xu/tewPHAQDM7LPb0dna5sxbhPeN+b0xoVf6ZkIhViosrnf8mUMXZ7yLChX78vvP47QWFfo5iKryvhb9xP0Tdiq8D2pnZSdHiqwndrfd392qE7r8ARkh+sqzowlE/AXe4e424f5Xc/aUdhFD4XMd3yX2O0N35LOC1QonU9l7PeuAS4Cwz60A4V5uANnExVY8KYcVi3ntHuyz0+BfvAXacoO3s/bAzv+d8/q5ju/vPhFbdBoSeFb94r0bJ8J789z22kR2fh8LH3955/gkYW+g1VnH3Ab8lfhERkWSlxFckBZhZNQvT0gwDnnf3KUWsc5yZNY8uzNcC+dE/CAnlXr/j0H8wsxwzqwTcTki68oHZQAUzO9bMygE3A/HjLZcCTW371X9fAq4ys2ZmVoX/jgnO+y3BRbG8AtxhZlXNrAlhDOXzO95yu/vbQugqfUu0qCohWVxtobDXrXHrLiZ0x33EQhGscmYWS4yfBC42s/0tqBydq6o7OPy10X72BK4AXo57bihhDPAfCONwi/t6VgBPAbdELZVPAv8ws7oAZtbQzGLju58GzjGzw6Lxzg2jFubt+YbQPb2cmXVix11yf+/7L+b3nM/4Y9eyqHhaUczsbjNra6EYV1VgAPBddP5eAY6Nzks5ws2QXODTaPNvCF3R0y0UA+u5k3ieAv5iZi2i17KPmdUCRgLZZnZWdE7LmVnnHYxtFxERSSlKfEWS2wgzW0doDboJuJ9QsKgoLYAPgPXAZ8Aj7v5R9NydwM1RF8prfsPxhwLPErqRVgAuh1BlmtCa+BSh5WsDobBWzKvRzxVm9nUR+x0c7Xsc8CNhPOplvyGueJdFx/+B0BL+YrT/32sw0NjMjieMta1IaC39nNA1ON5ZhBbnmcAyQgEk3H0CYVzqw8AqQhf0s3dy3DeBiYREahRx01a5+wLga0Lr4fjf+HoeIFSM3ofQov0d8HnUdfsDQot2rHDaOYQCXWuAsfyyJb2wPxFaLlcBtxHO+/b8EzjVQuXrnRZIK+x3ns/YtjMJN1p+iN7/RXU3r0QY372a8D5qApwQbT+LcMPhIcL74HhCobgt0bZXRMtWE7omv7GTkO4nJNPvE25QPQ1UjMZcH0kYc72I8Jm7m1/eUBIREUlZtvPaNSIiUtaZ2WDCeOSbEx2LiIiIyO6WsfNVRESkLDOzpsAp/LfKsYiIiEhKUVdnEZEkZmZ/IUz1c4+7/5joeEREREQSQV2dRUREREREJKmpxVdERERERESSWpkY41u7dm1v2rRposMQERERkSQ3ceLEn929zs7XFJGypEwkvk2bNmXChAmJDkNEREREkpyZzUt0DCKy66mrs4iIiIiIiCQ1Jb4iIiIiIiKS1JT4ioiIiIiISFIrE2N8RURERERS2cSJE+tmZGQ8BbRFjVciRSkApubl5Z3fsWPHZYWfVOIrIiIiIlLKZWRkPLXHHnu0rlOnzqq0tDRPdDwipU1BQYEtX748Z8mSJU8BJxR+XneLRERERERKv7Z16tRZq6RXpGhpaWlep06dNYReEb9+fjfHIyIiIiIiv12akl6RHYs+I0XmuEp8RUREREREJKlpjK+IiIiIiAiQnp7esUWLFpvy8/Ntzz33zH3llVd+rF27dn6i45L/nVp8RUREREREgMzMzIKZM2dOnzNnzrQaNWrk3XPPPXUSHZPsGkp8RURERERECjnggAM2LFy4sDzAmDFjKnXo0KFV69atczp06NBq8uTJmQB5eXlceOGFjbKzs3Oys7Nz7rjjjroA48ePr9S5c+eWbdq0ad2jR48W8+bNK5fI1yLq6iwiIiIiIvILeXl5jBkzpup55533M0D79u03f/nllzPLlSvHG2+8UXXQoEGN3nvvve/vu+++OvPmzcucNm3a9HLlyrF06dL03Nxcu/zyyxuPGjXquwYNGuQ9+eSTNa+55pqGr7766twEv6yUpsRXREREREQEyM3NTWvVqlXOwoULy7dt23bjSSedtBZg5cqV6aeffnqzuXPnVjAz37p1qwF8+OGH1S6++OLl5cqFBt169erlf/XVVxXmzJlT8dBDD80GKCgooE6dOlsT9qIEUFdnERERERER4L9jfOfOnTtly5Ytdtddd9UFuO666xr27Nlz3Zw5c6aNGDHiuy1btqQBuDtm9otpptzdmjdvvmnmzJnTZ86cOX327NnTP/nkkzmJeD3yX2rxTSEdrx1SrPUm3tOvhCMRERERESm9atWqlf/ggw/OP/XUU5tfe+21y9euXZveqFGjLQCPP/547dh6hx9++NrHHnuszrHHHrsu1tV5n3322bxy5cqMDz74oPLhhx++ITc316ZMmZLZqVOnzYl7RaIWXxERERERkUK6d+++qXXr1pueeuqpmtddd92SP//5z43222+/Vvn5/53d6KqrrlreqFGjLa1atWrTsmXLnKeffjqrQoUKPmzYsO+vv/76Ri1btsxp06ZNztixY6sk8KUIavEVEREREREBYOPGjZPiH3/44YffxX6fO3fu1Njv//znPxcBlCtXjqeeemoBsCB+u27dum2aMGHCrBIOV34DtfiKiIiIiIhIUlPiKyIiIiIiIklNia+IiIiIiIgkNSW+IiIiIiIiktSU+IqIiIiIiEhSU+IrIiIiIiIiSU3TGYmIiIiIlDEdrx3ScVfub+I9/Sbu6PnzzjtvzyZNmuTecsstywB69OjRomHDhltefvnleQAXXHBBo4YNG24dO3Zs1TFjxnxXePvTTz+9yaBBg5Z27Nhx8/XXX7/HXXfdtWRXxi+yM2rxFRERERGRHerevfv6zz//vApAfn4+q1atypg1a1bF2PNfffVVla1bt9r2tn/55ZfndezYcTPAgw8+WL/kIxb5JSW+IiIiIiKyQ4ceeuj6iRMnVgGYOHFixZYtW26qXLly/vLly9M3bdpk33//fYWOHTtu3LBhQ/pRRx21V7NmzdqccMIJzQoKCgDo0qVLy3HjxlW65JJLGubm5qa1atUq54QTTmgG8Mgjj2S1a9eudatWrXLOPPPMJnl5eQl8pZKslPiKiIiIiMgONW3adGtGRobPmTOn/NixYysfcMABGzp16rThww8/rDJ+/PhKLVu23FS+fHmfMWNGxX/9618/fffdd9Pmz5+fOXr06Crx+3nkkUcWZmZmFsycOXP6W2+99ePXX39d4bXXXsuaMGHCzJkzZ05PS0vzxx57rFaiXqckL43xFRERERGRnerYseP6MWPGVP7ss8+qXHvttUvnz59f/pNPPqlcvXr1/C5duqwHaNeu3Ya99957K0CbNm02fv/99+V3tM9333236tSpUyu1b9++NcDmzZvT6tatqyZf2eWU+IqIiIiIyE517dp1/aefflpl5syZFTt37rxpr7322vLAAw/Uq1KlSv4555zzM0BmZqbH1k9PTycvL2+7434B3N169+694l//+tfCko5fUpu6OouIiIiIyE717Nlz/QcffFCjRo0a+RkZGdSrVy9/7dq16ZMmTapyyCGHbCjufjIyMjw3N9cAjjrqqLUjR46suXDhwgyApUuXps+ePXuHrcQiv4dafEVEREREypidTT9UErp06bJp9erVGaeccsqK2LJWrVpt2rBhQ3r9+vWL3T25b9++y1u3bp3Ttm3bjW+99daPN99888LDDjssu6CggHLlyvmDDz44Pzs7e0vJvApJVebuO18rwTp16uQTJkxIdBhlXsdrhxRrvYn39CvhSERERERKJzOb6O6dEh1HYZMnT57bvn37nxMdh0hpN3ny5Nrt27dvWni5ujqLiIiIiIhIUlPiKyIiIiIiIkmtRMf4mtlcYB2QD+S5eyczywJeBpoCc4HT3H1VScYhIiIiIiIiqWt3tPge4u77xo2VuB74j7u3AP4TPRYREREREREpEYno6nwi8Fz0+3PASQmIQURERERERFJESSe+DrxvZhPN7MJoWT13XwwQ/axb1IZmdqGZTTCzCcuXLy/hMEVERERERCRZlfQ8vt3dfZGZ1QVGm9nM4m7o7k8AT0CYzqikAhQRERERKWvm396u467cX+Nbpux0XuD09PSOLVq02OTupKen+z//+c/5RxxxxIZZs2aVP+6441rMmTNn2m89bpcuXVree++9Px100EEbf1/kO9ayZcuc7OzsTSNGjPgxtuyvf/1r3cGDB9eJzSMcv/64ceMqDR48uNazzz77U0nEE3POOefsOWrUqJqLFy/+Nj09vUSO8fe//71OpUqVCi699NIVO187+ZVo4uvui6Kfy8zsdaALsNTM6rv7YjOrDywryRhEREREROR/l5mZWTBz5szpAMOHD6924403NjriiCNmJTougLy8PDIyfpnafP311xXcnS+++KLq2rVr06pVq1YA8PTTT9d555135rRq1WpL/Ppbt27loIMO2lhSSXhMfn4+7777bo369etveeedd6oed9xx63b1MbZu3cqgQYPUbTZOiXV1NrPKZlY19jtwJDAVeAvoH63WH3izpGIQEREREZFdb82aNenVq1fPK7x81qxZ5Tt27NgyJyendU5OTuvRo0dXjj13880318vOzs5p2bJlziWXXNIwfrv8/HxOOeWUppdffnmDwvt88803q7Zu3TonOzs7p3fv3k03bdpkAA0bNmx3zTXX1O/YsWPLwYMH1yy83XPPPZd12mmnrTjooIPWvvTSSzUAzjzzzMYLFizIPOGEE5rfdtttdQcOHNigT58+Tbp3797ilFNOaTZy5MiqhxxySPPoNaadeuqpTbOzs3Oys7Nznn322RoAffv2bdy2bdvWzZs3b3PVVVdti7dhw4btrrrqqgY5OTmts7OzcyZNmlShqHM3cuTIqtnZ2ZvOP//85S+++GJWbPnAgQMbnHLKKU27d+/eomHDhu2ee+65GhdffHGj7OzsnAMPPLBFbm6uAYwfP75S586dW7Zp06Z1jx49WsybN68chNbzSy+9tGHnzp1b/vWvf603cODABrfccks9gKlTp2Z269Ytu2XLljk5OTmtp02blrlmzZq0rl27Zsfiff7552vE/g/32muvNmeccUaT5s2bt+nevXuL9evX23beCmVGSY7xrQd8bGaTgS+BUe7+LnAXcISZzQGOiB6LiIiIiEgplpubm9aqVaucZs2atbniiiua3HrrrYsLr9OgQYO88ePHz54+ffqMl19++YerrrqqMcArr7xSbdSoUTUnTpw4c9asWdNvvfXWJbFttm7daieddFKzFi1abH7wwQcXxe9v48aNdtFFFzV7+eWXv589e/b0vLw87rnnnjqx5ytUqFAwceLEWRdeeOGvpkd98803s/r167fqzDPPXPnyyy9nAbz44ovz69atu3Xs2LGzb7311mUA3377baX33nvvu/ju0ADXX399/WrVquXPnj17+uzZs6cfe+yx6wDuv//+hVOnTp0xc+bMaZ988knVL774omJsm9q1a+dNnz59xrnnnrv8rrvuqlfUeXzxxRezTjvttJV9+/Zd9cEHH1SPJbQA8+bNy/zwww+/e+211767+OKLmx166KFrZ8+ePb1ChQoFr7zySvXc3Fy7/PLLG7/55pvfT5s2bUb//v1/vuaaa7bdRFi9enX6V199Neu2225bGn/MM888s9nFF1+8bNasWdMnTJgws3HjxlsrVapUMGrUqO+mT58+Y+zYsbNvvPHGRgUFBQDMnz+/wuWXX77su+++m1a9evX8IUOG/OrGQllTYl2d3f0HoH0Ry1cAh5XUcUVEREREZNeL7+r8wQcfVD7nnHOazZ49+xfjerds2WLnnXdek+nTp1dMS0tj3rx5mQCjR4+u9oc//OHnqlWrFgDUq1cvP7bNJZdc0uSkk05aeffddy+hkMmTJ1do1KhR7j777JMLcPbZZ6/417/+VZdouGS/fv1+lfACjB07tlJWVlZednb2lr322mvLgAEDmi5fvjy9Tp06+YXXPeqoo1ZXqVLlVzWFxo0bV23YsGE/xB7Htn3uueeynn322dp5eXm2fPnycpMnT66w//77bwI488wzVwF06dJl41tvvfWrZHHz5s02ZsyY6o899thPNWvWLNh33303vP7669XOOOOMNQCHH374mszMTO/Spcum/Px8O/XUU9cCtGnTZtOPP/5Y/ttvv82cM2dOxUMPPTQboKCggDp16myN7b9Pnz4rCx9z1apVaUuXLi3fr1+/1QCVKlVywHNzc+3KK69s9Pnnn1dJS0tj2bJl5RcsWJAB0LBhw9xu3bptAujQocPGuXPnZhZ1nsuSki5uJSIiIiIiSebwww/fsGrVqozFixf/Ip+444476tWtW3fr8OHDfywoKKBixYodAdwds6J7y3bq1Gn9+PHjq23cuHFplJRt477jGrexRLqwoUOHZv3www8VGjZs2A5gw4YN6UOHDq05cODAnwuvW7ly5SL3UVTMM2fOLP/www/Xmzhx4ow6derk9+rVq+nmzZu39aKtUKGCA2RkZHheXt6vXvDw4cOrrVu3Lr1t27ZtADZt2pRWsWLFgljim5mZ6QDp6elkZGR4WlrYdVpaGnl5eebu1rx5803ffPNNkUWDizof2zuHjz/+eNaKFSsypkyZMiMzM9MbNmzYbtOmTWkA5cuX37ZRenq6x5aXZWX+BYiIiIiIyO41adKkCgUFBdSrV+8X43zXrFmTXr9+/a3p6ek88sgjtfLzQwPrUUcdtXbo0KG1161blwawdOnSbaWML7roop+PPPLINccdd9zeW7du/cVx9t13380LFy4sP3Xq1EyAIUOG1DrwwAN3WAwqPz+fkSNHZk2aNGnawoULpyxcuHDKSy+99N2rr76ataPtCjv44IPX3n///dumXl2+fHn6qlWr0itWrFiQlZWV/9NPP2V89NFH1X/LPocNG5b1wAMPzIvFNXfu3Cnjx4+vFjsvO7PPPvtsXrlyZcYHH3xQGSA3N9cmTJhQ5FjimKysrII99thjy9ChQ2sAbNq0ydatW5e2Zs2a9Nq1a2/NzMz0ESNGVF20aFH53/Jayhq1+IqIiIiIlDHFmX5oV4uN8YXQivjoo4/OLVxJ+corr1zWq1evvd94442aPXr0WFexYsUCgFNPPXXt119/XWnfffdtXa5cOT/88MPXPPzwwwtj2/35z39eetVVV6Wfcsopzd54440fY1P8VKpUyR977LG5vXv33js/P5/27dtvvOaaa3ZYrfidd96pWq9evS3NmjXblkUfffTR684999xmsUJQxXHnnXcuPueccxq3aNGiTVpamt94442L+vfvv7pt27YbW7Ro0aZx48a5HTt2XF/c/a1bty5t3Lhx1Z977rl5sWXVqlUr6NSp0/phw4YVK4GuUKGCDxs27PvLL7+88bp169Lz8/NtwIABSzt16rR5R9s9//zzP15wwQVN/vKXvzQoV66cv/rqq9+ff/75K48++ujmbdu2bd2mTZuNzZo12+E+yjrbWfeB0qBTp04+YcKERIdR5nW8dkix1pt4T78SjkRERESkdDKzie7eKdFxFDZ58uS57du3/1U3XRH5pcmTJ9du375908LL1dVZREREREREkpoSXxEREREREUlqSnxFREREREQkqSnxFRERERERkaSmxFdERERERESSmhJfERERERERSWqax1dEREREpIzp/lD3jrtyf59c9skO5wVesmRJ+sEHH9wS4Oeffy6XlpbmWVlZeQDffPPNjAoVKpT+OVIlpZX5xFdz04qIiIiIlKw99tgjf+bMmdMBBg4c2KBKlSr5t99++9LdceytW7dSrly5UrPvkoxHSo66OouIiIiIyG9SUFBAmzZtWgN89tlnFc2s45w5c8oD7Lnnnm3XrVuXNnv27PJdu3bNzs7OzunatWt27Pl4S5cuTT/88MP3zs7Ozmnfvn2rL774oiKE5LpPnz5Nunfv3uKUU05pFr/NyJEjq3bu3LnlMcccs1fTpk3bXnLJJQ0fffTRrHbt2rXOzs7OmTZtWibA9o7fq1evpueff36j/fffP/uSSy5pNG3atMwDDzywRZs2bVp37Nix5aRJkyoUjrNwPLNmzSrfsWPHljk5Oa1zcnJajx49unJs3ZtvvrlednZ2TsuWLXMuueSShgDbO8bgwYNrtmjRok3Lli1zOnXq1HJX/f/Ir5X5Fl8REREREdm90tLSyM3NTVu5cmXamDFjqrRp02bjBx98UMXd19eqVSuvatWqBSeeeGLjM888c8Vll1224oEHHqg1YMCAPT/44IPv4/czaNCgBu3bt9/4wQcffP/WW29V7d+/f7NYy/K3335b6YsvvphZpUqVX3WjnjlzZsXXXnvth7p16+Y1adKkXWZm5s9TpkyZ8Ze//KXufffdV3fw4ME/XXzxxds9/vfff1/hk08+mZ2RkUHXrl2zn3jiiXnt2rXL/fDDDysPGDCg8eeffz678DHj41m3bl3a+PHjZ1eqVMmnTJmS2adPn72mTp0645VXXqk2atSomhMnTpxZtWrVgqVLl6YDnH/++U2KOsZdd91V//3335/drFmzrT///HN6yfxvCSjxFRERERGR36FTp07rP/jggyoff/xx1UGDBi1+9913q7s7BxxwwHqASZMmVX7nnXe+BxgwYMDK2267rVHhfXz55ZdVhw8f/h3ACSecsO7CCy/MWLFiRTrAUUcdtbqopBegXbt2G5o0abIVoHHjxrlHH330GoD27dtvGjt2bNWdHf+UU05ZlZGRwZo1a9ImTZpUpXfv3nvHntuyZYsVdcz4eLZs2WLnnXdek+nTp1dMS0tj3rx5mQCjR4+u9oc//OHnqlWrFgDUq1cvf0fH6NSp0/q+ffs27dWr16q+ffuuKt6Zl99Dia+IiIiIiPxmPXr0WD9u3LiqCxYsKN+3b9/V99133x6AH3/88WuKuw/3X+e1ZuYAlStXLtjedpmZmds2TEtLI1ZcKy0tjfz8/CIT13hVqlQpAMjPz6dq1ap5sVbmHYmP54477qhXt27drcOHD/+xoKCAihUrdoy9HrNfHn5Hx3jxxRfnf/jhh5Xfeuut6vvuu2+bb775Ztoee+yRv7NY5LfTGF8REREREfnNjjjiiHXDhw/PatasWW56ejo1atTIGzNmTPXDDz98PUCHDh02PPXUUzUBHn/88axOnTqtL7yPAw44YN0zzzxTC8LY3Zo1a+ZlZWVtN+H9LYpz/KysrIJGjRptGTx4cE0IY5c/++yzijvb95o1a9Lr16+/NT09nUceeaRWfn7IVY866qi1Q4cOrb1u3bo0CGOYd3SMadOmZR566KEbHnjggUU1a9bM++GHH341Dlp2DbX4ioiIiIiUMTubfmh3aNmy5RaAAw88cB1A165d1y9evLh8nTp18gEeffTR+f3792/6z3/+c49atWrlDRkyZG7hfdx9992LzjzzzKbZ2dk5FStWLHj22Wd/3FXxFef4AC+99NIPF1xwQZO77767fl5enp188skru3btumlH+77yyiuX9erVa+833nijZo8ePdZVrFixAODUU09d+/XXX1fad999W5crV84PP/zwNQ8//PDC7R3jqquuajR37txMd7cePXqsPeCAA3Z4XPn9rKjuBaVNp06dfMKECUU+p+mMik/nSkRERGTHzGyiu3dKdByFTZ48eW779u1/TnQcIqXd5MmTa7dv375p4eXq6iwiIiIiIiJJTYmviIiIiIiIJDUlviIiIiIiIpLUlPiKiIiIiIhIUlPiKyIiIiIiIklNia+IiIiIiIgkNc3jKyIiIiJSxow9qGfHXbm/nuPGFmte4CFDhtTo37//3l9//fW0Dh06bN7u/nr2bD58+PAfa9eunb/rohT5/dTiKyIiIiIixTJs2LCs/fbbb/3QoUOzdrTe2LFjv1PSK6WJEl8REREREdmpNWvWpE2YMKHKM888M/f111+vCTBv3rxynTp1atmqVaucFi1atHn33XerADRs2LDd4sWLMwAOP/zwvdu0adO6efPmbe69997asf1VqlSpw2WXXdawZcuWOe3bt2/1008/qTeqlBglviIiIiIislMvvPBCjYMPPnjNPvvsk1ujRo38jz/+uNLgwYOzDjvssDUzZ86cPmPGjGn777//xiK2mztt2rQZ33zzzfTHH3+83pIlS9IBNm3alNa1a9f1s2bNmt61a9f1Dz30UJ3d/6okVSjxFRERERGRnXrllVey+vTpswqgV69eK4cOHZp1wAEHbHjppZdqDxw4sMGXX35ZsWbNmgWFt7v77rvrtWzZMqdjx46tlyxZUm7atGkVAMqVK+dnnHHGGoCOHTtumDdvXvnd+4oklag7gYiIiIiI7NCSJUvSP//882qzZ8+ueOmll5Kfn29m5o8++uiCcePGzRo+fHj1s88+u9nll1++9NJLL10R227kyJFVx44dW3XChAkzq1atWtClS5eWmzZtSgPIyMjwtLTQDpeRkUFeXp4l6OVJClDiKyIiIiIiOzR06NCap5xyyooXX3xxXmxZ586dW77zzjtVjjzyyPVXX331zxs2bEj7+uuvKwHbEt/Vq1enV69ePb9q1aoFkyZNqjB58uTKCXkBkvKU+IqIiIiIlDHFnX5oV3n11VdrDRo0aHH8shNPPHHVhRde2KxSpUoFGRkZXqlSpfwXXnjhx/h1evXqteaJJ56ok52dnbP33ntvbt++/YbdGbdIjBJfERERERHZoS+//HJW4WU333zzsptvvnlZUesvXLhwSuz3cePGzSlqnY0bN06K/X7OOeesOuecc1btilhFiqLiViIiIiIiIpLUlPiKiIiIiIhIUlPiKyIiIiIiIklNia+IiIiIiIgkNSW+IiIiIiIiktSU+IqIiIiIiEhS03RGIiIiIiJlzMNXj+i4K/d36X3HF2te4CFDhtTo37//3l9//fW0Dh06bN6VMcSMGzeu0uDBg2s9++yzP5XE/keOHFn1vvvuqzdmzJjvirvNwIEDG1SpUiX/9ttvX3rllVc2OPjgg9eddNJJ60oivuL45JNPKvbo0SPntddem9OrV6+1seWVKlXqED9NVHE1bNiw3YQJE2bUr18/7/ds27Zt243vvffe9wDPPPNMzZEjR1YfPnz43O1t8+mnn1b86aefyp9++ulrAF544YXq06ZNq/i3v/1tyW89fnGpxVdERERERIpl2LBhWfvtt9/6oUOHZpXE/rdu3cpBBx20saSS3l3hgQceWLS7kt68vKLz0KFDh9bab7/91r/44osl8v/wW02ZMqXShAkTKhR3/QkTJlQaNWpU9djjvn37rinJpBeU+IqIiIiISDGsWbMmbcKECVWeeeaZua+//nrN2PKRI0dW7dy5c8tjjjlmr6ZNm7a95JJLGj766KNZ7dq1a52dnZ0zbdq0TIBFixZl/N///d/ebdu2bd22bdvW77//fmUIral9+vRp0r179xannHJKs5EjR1Y95JBDmseOeeqppzbNzs7Oyc7Oznn22WdrAPTt27dx27ZtWzdv3rzNVVdd1SAWS8OGDdtdddVVDXJyclpnZ2fnTJo0aYfJ2MCBAxv07t27aZcuXVo2atSo3V//+te6seeuu+66PZo2bdq2W7du2XPmzMmMLe/Vq1fTZ555pibANddcU79t27atW7Ro0aZPnz5NCgoKAOjSpUvLAQMGNGzXrl3rpk2btn333XerFD52QUEBF110UaMWLVq0yc7OznnyySdrxs7n/vvvn3388cc3a9myZZuiths5cmTNIUOGzB0/fny1jRs3WlH/V127ds2OnYfnn3++BsDatWvTDj744OYtW7bMadGiRZvYMWPWr19vBx54YIv77ruv9vb2UZQ//vGPS2+//fb6hZePGTOmUocOHVq1bt06p0OHDq0mT56cuXnzZrvzzjsbjBgxomarVq1ynnzyyZoPPvhgrX79+jVesWJFesOGDdvl5+cDsG7durQ99thjn9zcXJs2bVrmgQce2KJNmzatO3bs2HJn/7eFKfEVEREREZGdeuGFF2ocfPDBa/bZZ5/cGjVq5H/88ceVYs/NnDmz4qOPPvrTjBkzpr322mu1Zs+eXWHKlCkzzjrrrJ/vu+++ugAXXXTRngMHDlw6derUGa+//vr3F198cdPY9t9++22l995777sRI0b8GH/M66+/vn61atXyZ8+ePX327NnTjz322HUA999//8KpU6fOmDlz5rRPPvmk6hdffFExtk3t2rXzpk+fPuPcc89dftddd9Xb2ev67rvvKowdO3b2V199NePee+9tkJuba+PHj6/0+uuvZ02ZMmX6yJEjv5s8eXLlora99tprl02dOnXGnDlzpm3atClt2LBh21ox8/LybMqUKTPuvvvun26//fYGhbcdMmRIjSlTplScMWPGtP/85z+zb7nllkbz5s0rF52Pyvfcc8/C77//flrh7UaPHl1lzz33zG3Tpk3u/vvvv+7VV1+tXnidSpUqFYwaNeq76dOnzxg7duzsG2+8sVFBQQH//ve/q+2xxx5bZ82aNX3OnDnTTjnllG3dpNeuXZt25JFHtjj99NNXXn311T9vbx9F6dev38qpU6dWmjp1amb88vbt22/+8ssvZ86YMWP6rbfeunDQoEGNKlSo4DfccMOi448/ftXMmTOnX3DBBati69eqVSu/VatWG99+++2qAMOGDaves2fPNZmZmX7++ec3eeSRR+ZPmzZtxj333LNgwIABjYsMZjs0xldERERERHbqlVdeybriiiuWAfTq1Wvl0KFDs3r06LERoF27dhuaNGmyFaBx48a5Rx999BqA9u3bbxo7dmxVgE8++aTanDlztiWo69evT1+1alUawFFHHbW6SpUqXviY48aNqzZs2LAfYo/r1KmTD/Dcc89lPfvss7Xz8vJs+fLl5SZPnlxh//333wRw5plnrgLo0qXLxrfeeqtm4X0WduSRR66uWLGiV6xYMS8rK2vrggULMsaMGVPlmGOOWV21atWC2DpFbfvOO+9Uvf/++/fYvHlz2urVqzNycnI2AWsAevfuvQqgW7duG6699tryhbcdP3581dNOO21lRkYGe+65Z97++++//uOPP65UvXr1gn322WdDq1atthR1zOeffz7r1FNPXQlwxhlnrHz++edr9e/f/xfxFRQU2JVXXtno888/r5KWlsayZcvKL1iwIGO//fbbdNNNN+05YMCAhieeeOKao446an1smxNOOKH5lVdeuWTAgAErd7SPxo0b/6r/dUZGBpdffvmS22+/fY+jjz56WzK9cuXK9NNPP73Z3LlzK5iZb9269Vet04X17t171UsvvVTz+OOPX/fKK69kXXLJJcvXrFmTNmnSpCq9e/feO7beli1bdrqvX8T4W1YWEREREZHUs2TJkvTPP/+82uzZsyteeuml5Ofnm5n5o48+ugAgMzNzW9KalpZGhQoVPPZ7fn6+Abg7EyZMmFFUglu5cuUimxLdHbNf5jczZ84s//DDD9ebOHHijDp16uT36tWr6ebNm7f1ZI0dOyMjw/Py8naaHMXHnp6eTmybwsctbOPGjXb11Vc3+eKLL6Y3b95868CBAxtsJ45t56Dwa9ueSpUqFXk+8vLyeOedd2qOHj26xv3331/f3Vm9enXGqlWr0mrWrLltm8cffzxrxYoVGVOmTJmRmZnpDRs2bLdp06a0ffbZJ/frr7+ePnz48Oo33XRTww8++GDtvffeuxigc+fO6999993qF1100cq0tLTt7mN7MQ8YMGDlP/7xj/o5OTnbip5dd911DXv27Llu9OjR38+aNav8oYce2nKHJxXo06fP6ttvv73h0qVL06dOnVrp+OOPX7t27dq0qlWr5s2cOXP6zrbfHnV1FhERERGRHRo6dGjNU045ZcWiRYumLFy4cMqSJUu+bdSo0Zb333//V2NXt6dHjx5r77777m1jaD/99NOKO1of4OCDD157//33b9tm+fLl6atWrUqvWLFiQVZWVv5PP/2U8dFHH/2qq+//6tBDD10/atSoGuvXr7dVq1aljR49ukbhdTZu3JgGsMcee+StWbMmbcSIETttXY7Xs2fPda+99lpWXl4eixYtyvjyyy+rHHjggRt2tM2bb75ZrVWrVhuXLFny7cKFC6csWrRoylFHHbXqxRdf/EV8a9asSa9du/bWzMxMHzFiRNVFixaVB5g7d265qlWrFlxyySUrr7zyyqXffPPNtu7q99xzz6KsrKy8s846q/GO9rE9mZmZPmDAgKWPP/74tv+vtWvXpjdq1GgLwOOPP147trxatWr569evLzIXrV69ekH79u03XHTRRY0PO+ywNRkZGWRlZRU0atRoy+DBg2tCGOf82Wef7fT9E08tviIiIiIiZUxxpx/aVV599dVagwYNWhy/7MQTT1w1dOjQrD59+qza3nbxnnjiiZ/OP//8xtnZ2Tn5+fm2//77r+vWrdv8HW1z5513Lj7nnHMat2jRok1aWprfeOONi/r377+6bdu2G1u0aNGmcePGuR07dly/o338Hj169Nh48sknr2zbtm2bhg0b5nbp0uVXx6hdu3Z+3759l+fk5LRp1KjRlvbt2+8waS3srLPOWv3pp59Wad26dRsz89tuu21B48aN87799tvtbvPiiy9mnXDCCavjl/Xq1WvV448/XvePf/zjytiy888/f+XRRx/dvG3btq3btGmzsVmzZpsBJk6cWPGGG25olJaWRkZGhj/yyCPz4vf19NNP/3Taaac1vfjiixvdeuutS4rax45cccUVP99///3bilxdd911S84///xmDz744B4HHnjgti7QRx999Lp77723fqtWrXKuvvrqxYX3c9ppp60699xz9xo5cuSs2LKXXnrphwsuuKDJ3XffXT8vL89OPvnklV27dt20s5hibEdN7LuCmaUDE4CF7n6cmWUBLwNNgbnAae6+ww9Lp06dfMKECUU+1/HaIcWKY+I9/YofdJLSuRIRERHZMTOb6O6dEh1HYZMnT57bvn37nxMdh0hpN3ny5Nrt27dvWnj57ujqfAUwI+7x9cB/3L0F8J/osYiIiIiIiEiJKNHE18waAccCT8UtPhF4Lvr9OeCkkoxBREREREREUltJt/g+AAwC4quS1XP3xQDRz7pFbIeZXWhmE8xswvLly0s4TBEREREREUlWJZb4mtlxwDJ3/10D7939CXfv5O6d6tSps4ujExERERERkVRRklWduwMnmNkxQAWgmpk9Dyw1s/ruvtjM6gPLSjAGERERERERSXEl1uLr7je4eyN3bwqcAXzo7n8A3gL6R6v1B94sqRhEREREREREEjGP713AK2Z2HjAf6J2AGEREREREyqw7/nBqx125v5uef22nwxMrVarUYePGjZNijx988MFaEyZMqDxkyJD5f//73+tUqlSp4NJLL12xK+MqypVXXtng4IMPXnfSSSetK+ljSfLYLYmvu38EfBT9vgI4bHccV0RERERESt6gQYN2WzXaBx54YNHuOpYkj90xj6+IiIiIiCSxgQMHNrjlllvqAfz1r3+tu/fee7fJzs7OOe644/aKPX/SSSc1O+CAA7KbNGnS9r777qsNsGbNmrSuXbtm5+TktM7Ozs55/vnnawDMmjWr/F577dXmjDPOaNK8efM23bt3b7F+/XoD6NWrV9NnnnmmJsDYsWMrdejQoVXLli1z2rVr13rVqlXKb6RIiejqLCIiIiIiZUxubm5aq1atcmKP16xZk37EEUesKbzegw8+uMe8efOmVKxY0X/++ef02PIZM2ZUnDhx4ox169ald+jQIadXr15rGjZsuHXUqFHfZWVlFSxevDhj//33b3XmmWeuBpg/f36F559//odu3brNO+aYY/YaMmRIzUsuuWRlbH+bN2+2vn377v3CCy9837Nnz40rV65Mq1KlSkHheERAia+IiIiIiBRDZmZmwcyZM6fHHsfG+BZer2XLlptOPvnkZieccMLqvn37ro4tP/roo1dXqVLFq1Spkte1a9e148ePr3zaaaetufLKKxt9/vnnVdLS0li2bFn5BQsWZAA0bNgwt1u3bpsAOnTosHHu3LmZ8cf59ttvK9StW3drz549NwJkZWUp6ZXtUlcAERERERHZZcaMGTPnj3/84/KJEydWbt++fc7WrVsBMLNfrGdmPP7441krVqzImDJlyoyZM2dOr1Wr1tZNmzalAZQvX95j66anp3teXt4vduDumJkjUgxKfEVEREREZJfIz8/n+++/L3/88ceve+SRRxasW7cufc2aNekA77zzTo2NGzfakiVL0j///POqPXr02LBmzZr02rVrb83MzPQRI0ZUXbRoUfniHqt9+/ably5dWn7s2LGVAFatWpUWS7JFClNXZxERERGRMqY40w8lQl5enp155pnN1q1bl+7udtFFFy2tXbt2PkCHDh02HHbYYS0WLVpU/pprrlnctGnTreeff/7Ko48+unnbtm1bt2nTZmOzZs02F/dYFSpU8BdeeOH7yy+/vPHmzZvTKlSoUDBu3LjZ1atXV5dn+RUlviIiIiIislPxc/gCXH755SuAFQD333//timGJk6cOKuo7Vu0aLH5pZdemhe/rH79+nnffPPNzKLWnzNnzrTY77fffvvS2O/Dhw+fG/u9Z8+eGydPnlzk9iLx1NVZREREREREkppafEVEREREpETFtwiLJIJafEVERERESr+CgoIC2/lqIqkr+owUOcZbia+IiIiISOk3dfny5dWV/IoUraCgwJYvX14dmFrU8+rqLCIiIiJSyuXl5Z2/ZMmSp5YsWdIWNV6JFKUAmJqXl3d+UU8q8RURERERKeU6duy4DDgh0XGIlFW6WyQiIiIiIiJJTYmviIiIiIiIJDUlviIiIiIiIpLUlPiKiIiIiIhIUlPiKyIiIiIiIklNia+IiIiIiIgkNSW+IiIiIiIiktSU+IqIiIiIiEhSU+IrIiIiIiIiSU2Jr4iIiIiIiCS1jEQHIFLadLx2SLHWm3hPvxKOREREREREdgW1+IqIiIiIiEhSU+IrIiIiIiIiSU2Jr4iIiIiIiCQ1Jb4iIiIiIiKS1JT4ioiIiIiISFJT4isiIiIiIiJJTYmviIiIiIiIJDUlviIiIiIiIpLUlPiKiIiIiIhIUlPiKyIiIiIiIklNia+IiIiIiIgkNSW+IiIiIiIiktSU+IqIiIiIiEhSU+IrIiIiIiIiSU2Jr4iIiIiIiCQ1Jb4iIiIiIiKS1JT4ioiIiIiISFJT4isiIiIiIiJJTYmviIiIiIiIJDUlviIiIiIiIpLUlPiKiIiIiIhIUlPiKyIiIiIiIklNia+IiIiIiIgkNSW+IiIiIiIiktSU+IqIiIiIiEhSK1bia2bdi7Os0PMVzOxLM5tsZtPM7LZoeZaZjTazOdHPmr8vdBEREREREZGdK26L70PFXBYvFzjU3dsD+wJHmdkBwPXAf9y9BfCf6LGIiIiIiIhIicjY0ZNm1hXoBtQxs4FxT1UD0ne0rbs7sD56WC7658CJwMHR8ueAj4DrfmPcIiIiIiIiIsWysxbf8kAVQoJcNe7fWuDUne3czNLN7BtgGTDa3b8A6rn7YoDoZ93tbHuhmU0wswnLly8v5ssRERERERER+aUdtvi6+1hgrJk96+7zfuvO3T0f2NfMagCvm1nb37DtE8ATAJ06dfLfemwRERERERER2EniGyfTzJ4AmsZv4+6HFmdjd19tZh8BRwFLzay+uy82s/qE1mARERERERGRElHcxPdV4DHgKSC/OBuYWR1ga5T0VgQOB+4G3gL6A3dFP9/8rUGLiIiIiIiIFFdxE988d3/0N+67PvCcmaUTxhK/4u4jzewz4BUzOw+YD/T+jfsVERERERERKbbiJr4jzOwS4HXCNEUAuPvK7W3g7t8CHYpYvgI47DfGKSIiIiIiIvK7FDfx7R/9vDZumQN77dpwRERS1/zb2xVrvca3TCnhSERERESSS7ESX3dvVtKBiIiIiIiIiJSEYiW+ZtavqOXuPmTXhiMiIiIiIiKyaxW3q3PnuN8rEMbofg0o8RUREREREZFSrbhdnS+Lf2xm1YGhJRKRiIiIiIiIyC6U9ju32wi02JWBiIiIiIiIiJSE4o7xHUGo4gyQDrQGXimpoERERERERER2leKO8b037vc8YJ67LyiBeERERERERER2qWJ1dXb3scBMoCpQE9hSkkGJiIiIiIiI7CrFSnzN7DTgS6A3cBrwhZmdWpKBiYiIiIiIiOwKxe3qfBPQ2d2XAZhZHeAD4LWSCkxERERERERkVyhuVee0WNIbWfEbthURERERERFJmOK2+L5rZu8BL0WPTwfeLpmQRERERERERHadHSa+ZtYcqOfu15rZKUAPwIDPgBd2Q3wiIiIiIiIi/5OddVd+AFgH4O7/dveB7n4VobX3gZINTUREREREROR/t7PEt6m7f1t4obtPAJqWSEQiIiIiIiIiu9DOEt8KO3iu4q4MRERERERERKQk7Czx/crMLii80MzOAyaWTEgiIiIiIiIiu87OqjpfCbxuZn35b6LbCSgPnFyCcYmIiIiIiIjsEjtMfN19KdDNzA4B2kaLR7n7hyUemYiIiIiIiMguUKx5fN19DDCmhGMRERERERER2eV2NsZXREREREREpExT4isiIiIiIiJJrVhdnUVEitLx2iHFWm/iPf1KOBIRERERke1Ti6+IiIiIiIgkNSW+IiIiIiIiktSU+IqIiIiIiEhSU+IrIiIiIiIiSU2Jr4iIiIiIiCQ1Jb4iIiIiIiKS1JT4ioiIiIiISFJT4isiIiIiIiJJTYmviIiIiIiIJDUlviIiIiIiIpLUlPiKiIiIiIhIUlPiKyIiIiIiIklNia+IiIiIiIgkNSW+IiIiIiIiktSU+IqIiIiIiEhSU+IrIiIiIiIiSU2Jr4iIiIiIiCQ1Jb4iIiIiIiKS1JT4ioiIiIiISFJT4isiIiIiIiJJTYmviIiIiIiIJDUlviIiIiIiIpLUlPiKiIiIiIhIUlPiKyIiIiIiIkmtxBJfM9vTzMaY2Qwzm2ZmV0TLs8xstJnNiX7WLKkYREREREREREqyxTcPuNrdWwMHAH80sxzgeuA/7t4C+E/0WERERERERKRElFji6+6L3f3r6Pd1wAygIXAi8Fy02nPASSUVg4iIiIiIiMhuGeNrZk2BDsAXQD13XwwhOQbq7o4YREREREREJDWVeOJrZlWA4cCV7r72N2x3oZlNMLMJy5cvL7kARUREREREJKmVaOJrZuUISe8L7v7vaPFSM6sfPV8fWFbUtu7+hLt3cvdOderUKckwRUREREREJImVZFVnA54GZrj7/XFPvQX0j37vD7xZUjGIiIiIiIiIZJTgvrsDZwFTzOybaNmNwF3AK2Z2HjAf6F2CMYiIiIiIiEiKK7HE190/Bmw7Tx9WUscVERERERERibdbqjqLiIiIiIiIJIoSXxEREREREUlqSnxFREREREQkqSnxFRERERERkaSmxFdERERERESSmhJfERERERERSWpKfEVERERERCSpKfEVERERERGRpKbEV0RERERERJKaEl8RERERERFJakp8RUREREREJKkp8RUREREREZGklpHoAKT0mX97u2Kt1/iWKSUciYiIiIiIyP9OLb4iIiIiIiKS1JT4ioiIiIiISFJT4isiIiIiIiJJTYmviIiIiIiIJDUlviIiIiIiIpLUUqaqsyoVi4hIsuh47ZBirTfxnn4lHImIiEjZoBZfERERERERSWpKfEVERERERCSpKfEVERERERGRpKbEV0RERERERJKaEl8RERERERFJakp8RUREREREJKkp8RUREREREZGkpsRXREREREREkpoSXxEREREREUlqSnxFREREREQkqSnxFRERERERkaSmxFdERERERESSmhJfERERERERSWpKfEVERERERCSpKfEVERERERGRpKbEV0RERERERJKaEl8RERERERFJakp8RUREREREJKkp8RUREREREZGkpsRXREREREREkpoSXxEREREREUlqSnxFREREREQkqSnxFRERERERkaSmxFdERERERESSmhJfERERERERSWpKfEVERERERCSpKfEVERERERGRpKbEV0RERERERJKaEl8RERERERFJakp8RUREREREJKmVWOJrZoPNbJmZTY1blmVmo81sTvSzZkkdX0RERERERARKtsX3WeCoQsuuB/7j7i2A/0SPRUREREREREpMiSW+7j4OWFlo8YnAc9HvzwEnldTxRURERERERAAydvPx6rn7YgB3X2xmdbe3opldCFwI0Lhx490UnpSEsQf13Ok6PceN3Q2RiIiIiIhIKiq1xa3c/Ql37+TunerUqZPocERERERERKSM2t2J71Izqw8Q/Vy2m48vIiIiIiIiKWZ3J75vAf2j3/sDb+7m44uIiIiIiEiKKcnpjF4CPgNamtkCMzsPuAs4wszmAEdEj0VERERERERKTIkVt3L3Ptt56rCSOqaIiIiIiIhIYaW2uJWIiIiIiIjIrqDEV0RERERERJKaEl8RERERERFJakp8RUREREREJKkp8RUREREREZGkpsRXREREREREklqJTWeU7MYe1LNY6/UcN7aEIxEREREREZEdUYuviIiIiIiIJDUlviIiIiIiIpLUlPiKiIiIiIhIUlPiKyIiIiIiIklNxa1ESgkVTBMR2bU6XjukWOtNvKdfCUciIiKJphZfERERERERSWpKfEVERERERCSpKfEVERERERGRpKbEV0RERERERJKaEl8RERERERFJakp8RUREREREJKkp8RUREREREZGkpsRXREREREREkpoSXxEREREREUlqSnxFREREREQkqSnxFRERERERkaSWkegARCT5zb+93U7XaXzLlN0QiUhqKc5nD/T5ExGR5KcWXxEREREREUlqSnxFREREREQkqSnxFRERERERkaSmxFdERERERESSmhJfERERERERSWqq6lxI94e6F2u9v+nUpfy5UrVUEZHkoO9zEZHkpxZfERERERERSWpKfEVERERERCSpKfEVERERERGRpKbEV0RERERERJKaEl8RERERERFJakp8RUREREREJKkp8RUREREREZGkpsRXREREREREkpoSXxEREREREUlqSnxFREREREQkqWUkOgCRZNf9oe7FWu9v+jiKSCk39qCeO12n57ixuyES2dU6XjukWOtNvKdfCUciIlIy1OIrIiIiIiIiSU2Jr4iIiIiIiCQ1Jb4iIiIiIiKS1JT4ioiIiIiISFJT4isiIiIiIiJJTWVkS9jDV48o1nqX3nd8CUdSuhX3PK1Z+lyx1rvp+df+l3BKtVR/TxWnqiyosmxZpKqyUtoVu0r/q8W7vNL3lIjI7qMWXxEREREREUlqCUl8zewoM5tlZt+Z2fWJiEFERERERERSw25PfM0sHfgXcDSQA/Qxs5zdHYeIiIiIiIikhkS0+HYBvnP3H9x9CzAMODEBcYiIiIiIiEgKSETi2xD4Ke7xgmiZiIiIiIiIyC5n7r57D2jWG/g/dz8/enwW0MXdLyu03oXAhdHDlsCs3RroztUGfk50EGWEzlXx6DwVj85T8elcFY/OU/HpXBWPzlPxlNbz1MTd6yQ6CBHZtRIxndECYM+4x42ARYVXcvcngCd2V1C/lZlNcPdOiY6jLNC5Kh6dp+LReSo+navi0XkqPp2r4tF5Kh6dJxHZnRLR1fkroIWZNTOz8sAZwFsJiENERERERERSwG5v8XX3PDO7FHgPSAcGu/u03R2HiIiIiIiIpIZEdHXG3d8G3k7EsXehUtsNuxTSuSoenafi0XkqPp2r4tF5Kj6dq+LReSoenScR2W12e3ErERERERERkd0pEWN8RURERERERHYbJb4iUqpERe9ERERERHYZJb7yPzGzOmZWJdFxSHIwsxrAYDPrkuhYSjszs0THICKyPfqOEpHSRomv/G5m1hi4B/g/Jb/bpz/+v0kGMB243sw6JDqY0szd3cyON7OjEh2LlH36nioenafi86iIjJk1MDNdb4pIwumLqJCivpz1hV00d58PfAEcAhxmZpkJDqlUivvjv4+Z7WVm9RMdU2nl7j8DTwHjgduU/P5a7PvIzPYDLgI2JTai0iuWpJhZQzNrluh4SrO476k/mtnViY6nNDIziztPdcysdqJjKo3ibw6YWR/gdqBc4iISEQmU0MWJ/qgVRL8fb2ZnmNne7l6g5PeX4v6wrQDaAHejlt9fMLM9zezF6PcDgHeBu4BbzaxbQoMrZeIvlNx9GfAYSn5/wcxamtnB0fdRHeAvwGZ3Hxs9r++oQmKt4oTP3ttm9qdEx1SamdmRhBuZzyU6ltIoLum9hjANzwgzu1R1CX4p7jydA3QA7nb33MRGJSKixLdIZnYe8ADQDfjSzPZR8vtL0QVlX+Aq4ALgPeAU4FC1/Abu/hPQwcxGA0cDxwHXErryXqzkN4i1opjZUWZ2q5kNIrQO3E9Ifv9kZp0SG2WpUAfAzKq4+3LgJcL7qz9A9B2lbphxzKwVcCFwKnAUcLyZ3ZTYqEqnqEW8H9Ag6nmhmylFMLNewBHufjLwE9DT3bckOKxSIa6HRex7qCdwDWEIC2aWkaDQREQAJb4AmFk92JbMHQL0AA5z98sJXXTGmFk7Jb9B3B+1HOBdd//O3a8AphFaoY5P9ZZfMysH4O6tgVzCzYHv3X0e8DbwFXCVmfVIXJSlQ1yr3B3Al8ARwCtAdXe/B/ia0PJbLVUTu+jmwMfARGCZmZ3i7s8Dg4De0U2obS0tsu17/QqgNrA6+uz1BY41s9sTGlwpUMRnaR7wLLDCzK6N9YBK9b95RdzI3QQ8amY3ANWAM6P19t7dsZUm8d3AgcYA7n428AjwppmVd/c8Jb8ikkgp/QcNwtgv4E4z+0O06BRgH6CzmaW7+z+B24DJZtYm1hU61RS6SEqPfn4FNDSzbIAoSdkEHLCbwytVoguArWbWOeoqfxzhovJFAHf/jtD18lNgXQJDLRUsVHI+BOgDVAQygUXAG2ZWk5AQX+bua1M1sYu9bndfB/QHnjSz49x9OPA0cJ6Z9UtkjKVBoS7zS4GXgfnA6WZW393nAOcAx6VyolJorOoAM/sLcAvhxsqTQBPgSjNLS9W/eQBmVg040swam9nJZnYCUBO4AegMHBt9118B3GtmFVL15lzc++lS4F9m9g8zu8TdLwU+IfSey3T3vIQGKiIpLaXvvJlZTXdfaGZfAQeZ2TLgauDPhD9q84Av3f1BM9sKpOQXdqGLpH5AIzObTUhOCoATzWwqoXvqQuABd1+fsIATLGrBPJbQVfdcQktvVzP7xMzedPcT3X2OmT3m7ildmCjqYdEOuBeoAtwEnAysJ1yEvwP0cPcfEhZkAsV1A29PaF2a5e6vmlku8JKZneHur5tZOjA3ocEmWNy5OpJw860CYUz9k8CJQC8z+7e7zzKzHu6+MZHxJpgBHg3rOYPQxXkOsBR4BsiPll8CPJyoIBPJzCq7+1ozqw68BlQHctw938yOAzYSkuLmwHlAH3ffnMCQEy66MXAacCzwBlAZwN3PMbOXgLHAAYVah0VEdpuUbfGNWnpfMrPDCIV0viB0WTqE0L05HTjVzLoDuPuj7j4rUfEmUlzSewGhiuyXwBBCF8Kno9UuInQrvNXdFyQiztLCzPYgJHBnufsnFhU+cffuhJsG70WPUz3pbQFcR+guH7uJ8hXhhkprwnvsslRsIYh1r4wSuWMIXb+PAr42s07u/hYhMRlhZie4+2vuPiGBISdcdK4OJtxEmQc0BN4HpgCvEors9I4+jymZoJjZvmbWIurCnAm0J3x3HwF8CDzt7pvdfRSh2/NriYs2cSyMd34ieriM8H00AWgRLesHLAYOAvYDTnf3abs7zlKoKqFr86mEmyeXAphZU3fvQ7ipqSEZIpIwqdziux4YBlxJuHP7bLT8DMIF+E2EAldHmdnEVL6TG3Xdqk5oBT+dcHPgM+DtaMzOBOAfQGV3X5O4SBPPzNoBPwLfA0ui8UyxSuEV3L2jhQrPKc3M9iG0Jm1y99nR4lygGfAQ4QLpD+7+VYJCTBgza0MY03wh0AD4G6E4WktCkjLUzC5091FmdhLhvKUkM9sTaOHuH0aLDgdecPfngOfM7O+ElqduhBt1M1O1EJGZVQCOB7qZ2eVRr5OfCRX5AY6Puu3eBsxw92EJCzbB3P1HC9M69SS0hLcAegEDzWyIu39sZs8B3wHpqXhzLl5cl/j5hB4DS6MbvZjZZUC2mV3l7osTGaeISMq1+MbG30QJ2hpgLWEMYRd3fxr4mJDcHUZIih9KxaS30Fg5d/fVhITuSUKBmMOjpHcQoRBYnpJe60q4gdKJ6EZBdF7yzGx/whiwyu7+eSLjTLSoe/NZhG6VFc3saDOr5KEK9oWEeXyPdfcPEhlnIphZS+BxYKy7rwRmEKqBNwb+4u61gdeBd8ysq7u/5e7vpeK4QgtFl1oTijHViBYvJnz2AHD3QYTW3yx3/7e7T9/tgZYCUdfSzcCDhGJxf7MwB+0nwL7A34E8MzsVOAH4JkGhJpTFFfKK/uYdCrxFGIbxPOFvYD8ze4DQjb56Kia9Zlbf/jufeB/gejPrQqhb8TrwuZkdY6Hi/NnA46l4nkSk9Em5Ft+4bruXEYrpPAF0AW42s7sJdysrAMcAYzzMKZpSCo3p3R8oD3wOLCEU9rgy6lZ4KiEJfiNRsZYWFgrlXAfc4e4fWahqfYeZdSQU/OoDXO/uGxIZZ6JF5+mPwLVRq8pNhPGXeWb2iYfKu/MSGmSCRMMvJgHnuPvLZlaR8Fm708xOBMZFq35I6GKZH9s2FbsORi1M70eftWFm9gQhSRlhZjMJ48P3AtoSumCuSFiwpUdvoC6hBfNhQq+LmwnVwQsI3+9nufvMhEWYINHfvVjvnFMIf/9vNbPVhN5hZ/Df3ii9gRuj5DilRL0srgU+NrNKhLoorxM+e2cRhj91BS4GfgbOdvepCQpXROQXLAWvl2KtmQ8CQ939SzOrS/hDdgJhfO+nQLVUa8EsXHDCzC4nFKqYSah0fTowANiDcPFUDbjI3ackINxSIa6gzv8B1xN6EZzl7uuiFuB9CF0sP3b3sala1CP6zNUmXGw3Ai6OvW/M7HrC1FgvAO+n4vmJMbOvgW/c/Vwz+zcw392vjN5fZxPmDT0QuDwVu4EDRDcEOkbdTVsRxvLWJ3w//Q1YDdxHSHRbA39295EJCjehop4UG6PfDyOMv+xJ+Lx1JxSWu4Aw5rkmkOfRHL6pykJV4kuAEz1UAcfMriFcI5zv7lPMrJy7b01knIkSff4uJlwHNCN8vqabWW/CTZQbo2EYGQBq6RWR0iQlEt+ikg0zexKo6u5nRI87EcapLiUkLilXeMjMsqLulUTjUP/k7sdamKrhZHc/OHquNlAPWJ6KLeLwi4S3LrDCQ6XPjoTqnkuB+zyFK1vHFHEzpQthKpD3gBHuvjBa/ifg9VRtGbAwdVp+9PvHhF4o97j7TdGy2oT5xbsRWqLeSViwCWZhft6LCcWqGhFa4FYQblz2B/5KuHlZg9DF+ftUvOFkZm0JvSmGu/tMMzuc8Letf3QjKptwIyoPuNTdv09guKVC9B3+BHC0uy+zMM/6KkIX5yuA/4v+bfUUm+YpGk5QPjov7QndwE8C/gPc7e65ZtYL+CfhxmZK3mwSkdIt6RPfQt12Tyd0715KGDv3F0Lydp2FIjGHAH919+WJijdRzKwRYfzuP9z9/ag7Uy9gT0KrQGy+wtPd/eVExlpaWJiy6BZCoa+N7n5j1Mp7BrCB0O05Zbs2x5I5C1WJjwO2ECqo1yB0dx5DaOFN6SrgMYWS39HAGnc/dTvrplwiF8/MzifcqHzL3ftGy2oCRxKS4sdS+XvKQuXqPQn1KyYRuupuJCQp97v7s9F69xCmobs3FT+HRdyYawtcThhuUY/QZTcXuMHdx5tZLXdPyS7zUW2GboSeAZmEaR97Aa0IFa9fja4RTgCmeopOQScipVvSF7eKS3qvJlRErU7oDteTMO1FJzN7G7gTeDIVk97IBuDfwB/N7EBC1evjgf0Jd7+3mtkfgGssTNeT0ixU+7wTOIcw3cUFZva0u39GmAKkJqH7ZcoxsywzqxIlvUcCtxHGzu9FuOj+HHiJkAwfY9HUPakuOl+x7oFHAPXN7I3Y81ErXWzdlEt6418/8C6hi+7GqDYD7r6KMC3dQ4RquynJzFoTxol/D9xKqAben1C7YiBwhpndEd08OAC4M0WT3vS464N2ZrZ31ONkGuHm3Ivu3pkwfd8BAKmY9JpZo6i1t4BQuLEPYUaHFYTv8R+i5f3MLMNDwT0lvSJSKiVti2+hlt4s4EF3/4OFYjpdCUldbO7H2kBBrJtvKil0nmJFO+oQ7npXIBSqeJcwnvdA4ExP8fkKLVSzPJww32xDwrjwcwkVnb9x9wvMrEaKFj5pSWiJGxh1r7wM+IgwFuw6oK+7z43WPRRY6e7fJCbaxIpv4S20fNv4QTP7Bljk7sfs7vhKk7ihBYcRpnja6O7DzawDcA3h4vstwvfXvak6BAO2Tam2mPA9voZQnPAWYBYwgpDAXE0Y1/uku3+boFATxsw6A63dfYiZXUL4ezeXcG7OjH13R+NWbwJ6x8b7phILRfVuIPytq0koqncH4drgZXefGN2Qug6oSBjiszZR8YqI7EzSJ77RmJ2ZhMI56wgJ3GnReJR+wMRUT+RgWyGr0wnJWxdCQjeQUDm2E6Ew0dupOg4s7v1UjnCTJD8q8vEEMCwq5nEvYZzhKak4VtXM0glJ70rC3KCtgFMIF0tbgXPdfX50MdWSMIY1Ob+AdsDMqgG50XfQgYSxlnOB8R7NMRu1nORFv3eNehKktGhowd3AjYQpr/7p7ndE3VNvJPROuczd305gmAlT6CZmRcJYy+XRz8rAnwgt4c94is+namZHEYY6vQS0IXRlXmZmTwHNCcOeuhLO2bUp+n1+CGFqtT6E76eqhCmdJhLGPO9N6PVUF2gKjEvFxgMRKVuSLvGNWpw2RRfYzYHn3L171NX5AqCPu08ys3MId72PSsVuXvGiFsyHgafc/euoeEwfQhGP2zzF552NicYunUkYE/eCu//bzB4hzIu5BOhHqGiZyt0sOwDvE26YtCQMp/gE+I+7XxZdTD1KSFBGJy7SxDCz6oTWkRmEVpRHgeGEbt/PAW/E3j/xyW+qi4ZXvECottuSUD22GeH7/Zponaax3gSpzMwOJtzsrQGcTxi28iihRe4ewtR0D3oKViUudHPgSEJim0e4KfdjtPwt4D13/1eKj+m9iVBn4GEzq+Dum82sMWEozzxgLHAqIek9WJ89ESkLkmqMb9SS0p8wmXp9wrQWG6On3ya0Zg4zs4cJSe/pqZj0FhorF5sPsyZwWfR4KWGsXDVgoJlVKrxNqokuJm8gJC1ro58AHxAKftxMaPlN5aQ3jdDaW45wsZ0Tjbs8HjjQzF4gtBAMTMWkN7KRcJNkX0IF8Kvc/QbC91YL4IjYiqme9Ma+c8yssrvHbixVJNyM60IoZDXQzP4OoAtvMLNahDno/0b4LD5BNO0coUjT1YSxqymX9MIvan6ku/v7hCJ75YAe0ZAnCDcyy0Xrp1zSG/e3vhGhpxdAbnTO5hOG9VQnFEq7EThUnz0RKSuSscW3K+EPfwVgFHCER1OCRM93I3S7XBp9iaeUQne8jwHSCWN46xK6Ec5z95ssVLnuCfwtFQt+mVlDoKG7fxk9PpOQsFQHriWMVf0x7k54NXdfG39+U0VcN/AMd88zs6qEboL3EboQjjSzyoTPZAWPpjBKNWaW5u4FFirunkUojDYVuNrdN1gomPYA4UJyVQJDTbi499RxhLnD+0Sfr+5AP3e/KPquPx0YlcI3Un7FzPYlTGPUkHBDriYh4f2BMLzgV+PKk52Z1Yn9HTOzAUBHwg3M54BKhBty84Bvgb6EaZ9SeghUNJ7+BuC6aCxvGuF6oR7he+ocd1+XwBBFRH6zjEQHsCvELigB3P0zM9tCmNvxJqCbmVUiVNhdBCx09/sSF21ixO7ixiW9sa7eKwmFmt4A/g7808xGEcY5nZKiSW8r4BXgHjP7PrrrX5XQzXIzodDJwmis6tFRN/p1kJrVdqME5USgl5lVAB72MCXWHcDtUUL8BqFyeEqKErmCaBjBSnd/2sxWA4cRpr96mnBjZT2Q0r0rYNt76mBCy+XAuII5W4HqZvYQcCyhENHnqXjDKZ6ZnQ3s7+4D3P0bM8snDFe5hTDtzD3A2hRNevcmzFZwN6HmQG/gKuB+4AJ3v9TMbiaMZ10KHJ+qN+cK+Rz4GDjdzHD3iUBB1HhQiyS5fhSR1JJULb7RF/JawvimPQkTzrcCXiRUuUwjtGjOTFiQCVKoWM6xhLkuTyD88fpz9POV6M5uHUIBp1Ts5tWMUB32AXd/Om55OeBNQlfVfkAPwl3vq939nQSEWmpEBZruBU4iJHBOuGkSKyB3A6Ei+IpUTE7iWi+PIVQAX0i4CXA+4UL8D4R5MTcRquy+nrBgEygax1vf3SdFj88H0tz9CTPLdPfcaHk3YA9gtbt/mLiIEyf6zLUDvotuMtUnzNc71N2vjdY5HRhEGIt5TezmcKoxs2xCDYuhhBsnowm1Go4l/A00whzjnQk9weYlKNRSJ+r5dD5wKGG++i2Ecb193H1yImMTEfk9ynTiW6jb7h8Jf+Q/IdyNjHX1OhvIInTZTcm7uNHYpQnAfu6+0sxuIUwBcoS7fxElulcQujsPTuViVlFycqC732BhTtUDgPaE8XFPEy6eCggX3g94ClaQtTDv7tbYhbSZXURoKSkArie0ws21MJfvejNr4O6LEhhyQhRK1nIIFVEvBb4hFGrKdfczom70BxPeT9NTtfXSzC4gtDDNI/SsuAo4wd17xq3THVjiKVpdHsDM/o+QyA0hzJF9nLu/bWZ1CXPO/tvdB5pZrKL6nVHdhpQS3cRc6e5rzOwIQgXnhYTkbaG7nxStdzHhWujRhAVbilmoEN6JUOzyZ+Add5+V2KhERH6fMttVJSp4siH6/SDClARd3X2RmT0GvEf4oh5CaFFJ2UIx7v6zhflUPzWz/d399qhL6vVmdqu7fxt1HbyIMA4sleUBA8zsDcLNgHKEcb01CRXAT43GOtXwFJy6IeoG/g9gvpnNc/dYEZ0LCN3B/xAlvX2Aw6OLypSbOsXMagD/MrOHohtJucB0wvRpucDJZjY2umH3OPBxrOZAqiW90Y23vd39SQtzrt9P+N5+FGhpoXL6QMK4zGcI77WUTHwtzH19P3CRu39oZuuBvc2sh7t/bGb7AZ+ZWROgA3BMiia92cDLwCwzu9LdR0eftX6EYTzvR+udS5jD9+SEBVvKufsmYHz0T0SkTCuTVZ2ji+++ZpZpZjUJ3SxbAeUB3P1iwkXm58B84C+p+Mc/nruPIFw8TrQwpcpNwFfArWa2X3R+/uruyxIZZ6J5qPR5ByG5SyeMjTvB3TsD5c2sbtTSmXLFhyxMFTaEUMl6BHCSmZ1MuCCqQmit2xJ1w7wRGO7uW1MtkYukA1OA68ysM7CCUGegc9w6w4B8d8/zFCy0B9sqgfcFzjGzwwmV+FcTuqJ2IhRIqwGMjH4f6O5jExFrKXESsCBKepsQejl1AJ40szuim3GdCHPUHpiKw3oiPwDTgO7A3VFPHiP0fPoX0CW6uXkOcKpaMEVEUkOZ7OpsZm0JharqERKQqoQ/Zm8Qxjiti9Z7APiHxuz8V3QB8E/CxdFawgVSM8IUBVtSNEkBftV1vra7/xz33GGEyp8neJhaJaVYmCrsPWCcu18XLesDVHT3wdH4zLsJ8/c2JnTbHZmq3XZhW0vmmYQCVpcB+xA+b0/x3668V7j7BwkLshSIxqeeBTQgFJX7nFCUqRbh+/xLC5XCM6PeKyn3nrK4Ao5mNpQwjj4HeNbDPKttCa3h97r7ywkMNaEszDNbwd1nR0N8LiPc4F9AmC6sB+GG1CXuvtWiavyJi1hERHanMpP4Fr7YiboS/o3QOnA/IQl+CBgOPO/uaxIQZpkQJb/3EbqGrzazWqlYyComrviQET4TBXHP1SK00t0F3OTuoxIVZ6KZ2SDCnMX3uPsnZnY/oQVqEqH3wGfR7xaNq0u5BKWwKPn9A3AIYVqeJoQq6o0JxeTeT2B4CVXoRlM9Qj2GRoSW8M8IvVKaE24UfJyq76VCSe/RhJu9ZxKKW50ArI++v+4CFrn7g4mLNnEsTJn2AKHn1+vu/oaZ9SfcZHqfcGPl78DRwBPufrG+o0REUktZSnxjc4TGVyc+gDA2ZzMh6a1LKD70GPCU/qBtn4V5ev8EdErV8xSX8GZFRb/S3T2/0AV5Z0JX+nvdfUQqXigVuvC+hlCIaSYhgbuFMH71SsIF+R2e4vNfFlYo+b3O3WfEn9NUFn2HVwTWuPvX0c2VPQmFiD4HbiXcIEj595SFatbXAGe4+xYze47w2RtIuAF1I3Ciu89JXJSJFfU8OYyQ4P4V+I4wg8HfPMxYUA+4EHgxlQukiYikqjKR+NqvqxKXd/ct0XP7E8rrryckvDWBTerevHMWVd1NdByJEJf0Hk2Yn/drYBmhqvWmQuvWc/elqZj0xhRKfi8lXEze6u7Do2UZQBV3X524KBPPzNoDG919TqGbdLFuzwcCt7n7lETGmUhxn71uhOrWowg3BYa6+13RzZVsYIi7f5zIWEuDaBx0F+BT4Hp3/3u0PB14EmgJVAL6uvv0hAVaikRFvu4mTF3UnVCg8Dx3/143nUREUleZKG4VjbWMVSWuGd3tLhc99wVhmpA6QH9gjpLe4knVpBdC5Vwz60IoXnUNoSp4T0IBFCBcoEfrLo1tk4BQEyruHBREF9q4+8OEqZ3OMrNDzKxcVKBpdQJDLS3OI7yniCW90e/LCeNXvyGMr09Z0WevB6GV8hx3v5QwT+jFFqbGeowwpVFKD7+I/e7uBR4qg/8duCEab4+75xMqXI8ltAIr6Y24+9eEwlUrCeN7DwJOiG4ipNz3uIiIBGUi8YVtVYmvAiZEye9WMysfPZ0BTAaeiS4GRH7FzJpFFYdjGhEuJmsSxlwOcveNZtY8lVt34RcX3hVjy6Ju4BnR7/8gzBl6A1B590dYag0C1ppZJ/hVArOYUP06ZRPfKPEA6E0Y81wLtt1cOhvYP7ohd6+7z0hIkAlWaKhFbzP7o5kd7O7XE8Y7fxPVHsDd8939RldV4l9x9wXAc4S5xZ8C3o5uIqTs97qISKorM4kvgLu/A1zKf5PfLVG3y2GESdWXJzZCKeU6A2+Z2SHR4wWExO1p4FgP888eR3iPVdzOPlJC1Cr3f8BTZjbQzHpHy/NiyYuHOXwvSvWWXjPramYnmlknd98M/EzomkpcApMW3TQoAB5OXLSJEXcDIJawXUEYO39tNC4TQnX+pmZWCdi6+6MsHeLeMwMJwzDKAfeZ2anufi3wGvCDhan8ZAc8TKe2zt0v1M0BERHJSHQAv5W7vxMlu2PN7FlCV6/e0d1dke1y91eiLvJPmdmFwEfAO4QbQM3MrDmhIMqf3H1j4iJNvKhl/H7CNFe3AwvN7C13z411e45am35MbKS7n5lVJLRMfmRmewFnEBLaHDN7j9ASfrOZjY4VGorGFBaY2Z9SsVdKdCPlKMK84bOBWYSpnTKB8WY2nFDx+qFU/+zBtjHhbd39EDO7AlgOjIjGjQ8ys1zCTYSUm09cRETk9ypziS9sS37TgBFAB3efnOiYpPSKK6ZTw91fiFqfHgf6AY8Qprf4B7CYULApJas3wy9a5rKBqwkJXS3gAnfPNbNG7r4gFZO3OOWArmZ2PbAHcJi7r4haLm8l1BtoAnQA5sRuEsC2cZkpx0J19LMIlYerEOZTfczdLzQzJxQo7OOhsnN6qp2nIr5vNkaLRxHGpB4X9bY428w+dfc/JSZSERGRsqtMJr4A7j4qqkqc8q0Dsn1xSW8X4E9mdo+7Px8leM8Rius8ZGaDCQ1TG1M16YVfdLNcTJgTMxc4wt2XmdnxQBszu9+jquqpJGrd7efufzaz+YSCOe94NAe2uy8xs8sJBdI2ATea2b/ji1ylIjPLAgYDP7j7mKjL9xTgdjM7wN1vMrPqwGAzOzwqZpgyCo3p3ZcwQ8FiYDyhx8WNUdLbH7gWOCZRsYqIiJRlZWqMb2FKemVn4saqXg3UB542s27uPhT4MzDczI5w9w2x91OqJb2xVl4zO8DMzrMwFcgiQlfwUcDW6MbB34ApqZj0RuYD75pZbXd/gVCgaZGZPRR1oQeo7u5b3P124HtCy3lKc/eVhCEEPc2sj4cK4HMJ43j3ida5FPiQ0BqcUuKS3kGEiuB3ErqBLwXeBu4ys6GEpPc016wFIiIiv0uZmMdX5PcysybAG4Q5HL82s5uBwwjjeD+OWlHmu/uYRMaZaGZ2LKHC9RDCfLP3EsYVdgeOAlYDD7v7m6nYIm6/nJN3FjDB3fuaWUvgOsL5+TfQB7iFUDH8JeDIVKs/ENfLohNQg9DS+4OZnUh4Xz0DvAs8C1zu7h8lKtZEKtTS243wnXS0mT0J1HD33lFLeF3CeVzk7gsTF7GIiEjZpsRXkpqZVSZcYN/h7t9EywYDBwInufu0aFnKJXMxZlaVUGn4BmBvwrjnnlFLHRamTilw91WpeJ7iErm93f37qHX3S2CSu58bdYG+kdD1+apoGEYdwvfrskTGnihmdjTwT0KSew1watTNuVe0bDww0N1nmVlaVPwrZRRKevckjBU/CdgCHACc7O6bo94pnyYuUhERkeRRprs6ixQW1223splVd/cNhJbLzmZWN1rtaWAJobpzOUi97s0xZraHu68DfgDuInS1PM7dV5rZ8WbW1t1XuPsqSM3zFCW9xwKjzGwfd99KmK6os5k97e4/uPv5wKFR0mvuvjyFk95s4A7CWNSJhHHiT5rZ8e4+nFDIqjbQFrZVvE4pcUlvb0Ivi41AO0JvlN5R0nsJ8Dczq5a4SEVERJKHEl9JKlGScgKhe/PbZvZH4C3gREKxobsIFZzPB74DGiYq1kQzswaEc1IbWAjkALe7+zwz25/QLTXlL7rNrCPhPXOGu39rZg2j5Hdf4EAzGxatqm6ogLvPBk4D6gF3unsD4F/A61HxqveBu4GrzKxaXCXxlBK1fp8HnB/1PBkPfAP8xcyuAQYAf3T3tYmLUkREJHko8ZWkYmbtCGMsrwcuIbQ6NQYuAz4jdCU8l9C1cD9CS0uq2gh0Ao4DhhEuvP9gZi8SqvBek+rdLKNuzPmEVrm9zWwg4YbK80AzoA2ha/i2VrxUbBWPiSWx7v4dodv8V9FTE4CxhIrFuPu/gf9z97Wpcr6KSPALgCMI06lB6Br+FqE3SjlCy++03RehiIhIctMYX0kqZnYAMMjdT4keNwX+A1zp7iOiZQcSxhme7O5TEhVrokRdvtPdfXF0vv4Y/cskFNLZk1BI59tUHNMbY2YHEW6iPAj8H9AKeIrQU+APwMfu/mq0bsqep3iFxq72BC4Cfga6EVovv0jFc1XovFQF8tx9k5mdTqguf0vsvVR4fREREdk1yuw8viLwqwtKA34Ccs2sAzDL3eea2WOEpC5mEnB4NKVKSjGz+sBNQLaZ3U/onrsO2Csq/rUc2NbKlKoX32bWgtAd/k53/4+ZjQc2R8lKK0Ihq9di66faeSr0uatOuIm6utB5+AqoSOhVcLO7fwGpd67gF2N6ryGcj4ZmNtDdXzazXOAWMyvn7i/Gry8iIiK7jlp8pcyKq7Z7DHAwobXyFkIrUwPChfcywnjCs919fCq2pMSdpyruvj6q0rw/cAHwNXAV8DlhjtD1iYy1NDCzdEI3+XOA9wlJW56ZZQA9CYWb7nL3NxIXZeKYWT1gH3cfHVVvvgVIJ0zn9HhU/ftXlZpT9LPXkXBuvgX6E8Y+HwmMAZoAF7j7+2Z2GnAFYeqw9al2nkRERHYHtfhKmRUlc90IlYivBY4lFGS6G8gmVEntCVzi7uNj2yQo3ISIS3qPB84xs4rAi8AI4FNCdd0GhEJEjYHpKZqgxM5TXWCduz9kZqsJNwhOMrPhUfI7n1CMaGoqnqdIL+Cg6FydQbhJUEC4IWCEVvJfVWpOtXMVVQL/G3A/sILw9/Zs4ErCON5hwDAzO8vdXzGzt3XjSUREpOSoxVfKlGh8XDn/7xyzVwEN3P3a6PHVQG/CPLS5ZlbB3TcnLuLEM7M2hG65fYF9gJaEIkP/cvfVZpYGPASscPdbEhdpYpnZccDNwFxgE2Hc83lAU0LL+EupOPVOUczsSqA7oSvzqdH0O3sBo4Hr3P21HW2f7KLxzU8DfWNdvKPlTQj1BU6Iel98CmyIHm9KTLQiIiKpQVWdpcwws5bAC8CAaJwlhCSlatT6hLvfRxjn2zx6Pnd3x5loZtbEzG6MW9QImOnuX7v7s8Ao4BBCEavYPKrfAi3NrPzujrc0iLqk3kSYY/Y/hDG8mwnFrH4iFGeql7AAS4H4qsTu/gDwOlAZOMrMarr7D4TzVSkxEZYqHYGHomJe5eKWLwcWAL3MrB/hc3e+kl4REZGSp67OUiaYWQ7wHPAY8G93XxU99RVh7NzpZvYFkEdo1dwCqde9MrIFuDhq7b6FcHFd3sxOcPe33P1jM/ueMG/vlOjCvAD4q7tvSWDcu1WhrspbgAeAHoRW3sPdvcDMmhGqOjdy98WJiTTxzCwj6ur9f4TPVwHhfFUETgAOMLPPCAXBzk9YoAkW955qBqyJFufFrZJH+Dz2AA4ATnf3ebs3ShERkdSkxFdKvah780PAY+7+dNzyfsAi4GJCF9UeQH3gWnefk4hYE83MYtMUdQXeiR7fZGbvAQdamOf4Q+Aw4AkAd98KPJm4qBMjGtN7EFAV+B64DVgLHOzuG83sYOAGoJ+7z09YoAkUteSuipLeY4DbCePpHwLqu/s1UTGwiwhJ8Nmx8fSpKO5GyuvAjWbW0d0nRsMJzN23mJkDDxO6hK9MWLAiIiIpRomvlAWbCN0Dt40bNLOzgUGEbpV/dfdLzSwTqOPuC1Kx8FD0mvPNLNPdF0atc6PMbCPhQrsb0I9Q+GtgdEGecuepkNj0Tp0Jydz1QOdovOrVwA3uvjSB8SWMmVUhTLPzhbsPI8xlfAbQBlhNeE/h7k9Eid2n7v5touItZb4APib0RMHdJwKY2RnAmcDLSnpFRER2LyW+UqpF4wqrAPsRium8HS2rHD2uAAw3s/ejVrkFkJpdnKMWzMOBU81sGvAOoWX3AyDN3f9CaAWu7O4blPRCNI/qvsAR7v4vM6sAnERoBR4YTTWTyudpE9CeUIHYCD0rGgHneJgjuzdQ4O6PJTDGUif6fD1J6DZ/v5l9RRgzfiqhGNiChAYoIiKSglTVWcoEM7uIMLXMw+7+ddSFN9/M9gf+RLgQX57YKBPLzA4gTOf0CtAaKAe8BHxDmKf3dXcflLAAE8jMGhKS22fNrAdwMqHq7iygD6E785Fx6/9qHtpUYWYNgMruPsfM9iTMZXw3MAH4ErjI3YdGU4kNBi5093GJi7j0iqYP6wgcDiwGxrj77MRGJSIikpqU+EqZYGZ1CPNf1iIkduMIxWH+Cdzs7u8kLrrEi7rmvgg85e5PmdkewMHAQe5+iZk1Apql6vhLM+sAbAXmEwoz/YPQAlcFuBR4FXjD3Z+I1k/JVt6oe/NQwhRO50U3mdoTxoBfAtQFHgXeBboAf3L3kQkKV0RERKTYlPhKmWFm9YDTgAHAZELl1Lvc/Y1ExlUaRInvPwlTFB3i7qui8/UKcLG7z4jWS8mEDsDMKgEvAx+4+z/NrAbwV8I4372BHwlVdlOmsnVRzOwmws2A1wgViH8GsgjFrP5qZq0JVbDLu/uMVH5PiYiISNmhxFfKnCihywdiRZxS7sI79pqj+YyrR/OF1gD+AtQGrgHKA28Bvd19ZuKiTYyolXs/QrXhn939P2Z2CKEK+Nfufne0XidCcasF7j4iYQEnUNSjoq27j4ke3wlUB0YCxwKtCHPQPuTunyQsUBEREZHfSYmvSBkVTS/zL0L33TxCglKL0I23O6Gq7EPu/nHCgkyQ6IbAq8BnQA3gIMJ0WH82swOBK4CJ7n5noe1S8SZKOeAywvvnI3f/SzTt1WGEAmkLCBWvTwOWEpLgvFQ7TyIiIlK2KfEVKUPiWnrLAf0JLZdfm9lwQpX2PoRxq1cCe7r7WfHbJSru3cnMcoDHgGfc/ZloWXNCdesh7n6LmXUnzNH7mbvfkbhoS4eoxXdPws2CEcB/gAOBr9z9VTMrD/QitIqn5DhxERERKduU+IqUAfGJq5kdCwwE0gmJ3OBo+cuEbs4nAPUIc9LmAZe5e35CAt/NogRtBjDF3U+KlmW6e26U/H5OqOD8tpkdBKxz90mJi7h0ibrL3wZsBPYBmhDeP2Pi1kmZmygiIiKSPNISHYCI7Fxc0tsC+AMwBPgEOMDMjovWOR1YB7R09x+AO4E/p0rSCxAVpjoD6GZmF0fLcs2svLt/R2jR3Cta/WMlvf9lZhnuvhq4jlC1+SsgB7jKzKpG82en5BzZIiIiUvZlJDoAEdm+qFpzD8J8vM0JxYaGuvtzZtYUOAY4Lkpa3oi1cgK4+48JCDnh3P2raPzzaDPD3R8jFEMDWENozQRQAhfH3fOi+Ys3A2OBsWa2Bpjk7usSHJ6IiIjI/0QtviKllJm1BP4NbHT3rdGURG8Bp5hZXXefS0iEZwPHm1mdWKtcqnP3CcARwJ1mdom750fjek8EpkXrpGTiG3uPmFl3M7vUzHpE8z7j7gXRc2nR43+4+0d6X4mIiEhZpzG+IqVQVKDpEULr7tPR2NU27j7JzB4F2gEnu/tyM2sC4O7zEhhyqRRNVfQ2oYtze+DuVJ2yKJ6ZHQ3cR6gKfhnwIKHqdUFCAxMREREpIWrxFSlloorNbxEKLz1tZumEaWUOBnD3AcBkQlfeOu4+T0lv0aKW32OBfsC97j4i1VsvzawqoeX7GOBrYDPwb3cviG6wiIiIiCQdtfiKlEJm1hkYRaiw2w1Y4u5XF1rnH8Cr7v5pAkIsU8ysiruvV0XiwMxuJrSANwZ6u/t8MzsRWOzuXyY2OhEREZFdT8WtREqh+AJNwEx37xt7zswOANq7+1UJC7Ds2ZDoABIlbu7n+kD5qHfAHEKr7x1R0tsZ+DtwQSJjFRERESkp6uosUkpF3XQPBlqZ2QUAZtYNeBL4IYGhlTmxVt5UbO2Nkt7jgQ+BIWZ2l7u/DLwHnGFmbwCDgWvcfVwCQxUREREpMWrxFSnF3H2ymR0BvG1m+xKKWl3v7qMTG5mUZtG0RLEKzS2AswnzP88DvjKzre5+s5ntCWQTujhPV1dwERERSVYa4ytSBkRdUT8EznL3NxIcjpRiZlYPOBV4AqgJPApUBvq7+1IzywK+AP7j7hcnLlIRERGR3UeJr0gZoQJNUhzR/M8GrARWA4cBA4AXgQ/dfZmZ1QImAUcDMzSNkYiIiCQ7dXUWKTtStkCT7JyZ7QFc4O5/iR4/DGwEbgbKA70BN7OPopbfvdw9L3ERi4iIiOw+Km4lUkakcoEmKZY6QHszuyt6PBQoB9wEvA28DJwOHBrNFa1WXhEREUkZ6uosIpIEzCwdaAtcRShWdYOZ7Qf0J3R7vpPQtXmeu3+TsEBFREREEkCJr4hIkjCzNGAf4Er+m/x2AC4GlgN/Uo8BERERSUVKfEVEkkw09dXlhOT3JjPrCGxy9+mJjUxEREQkMZT4ioiUcVFLr7l7vplVBWoD1YEbgLnufl1CAxQRERFJMBW3EhEpY8zMop+1zSzD3QuipLcR8BWwVzSO9y7ghQSGKiIiIlIqqMVXRKQMMrPjgEFAHqFldzphLO8Wd/9nImMTERERKW2U+IqIlDFRtea7CInvUUBn4HFghrv/FK2T5u6askhEREQEdXUWESlTzKw+oWrzZnf/xt3vAsYAFxDm8a0AoKRXRERE5L+U+IqIlGJmtpeZ/dHM+pnZse6+GPgIqGZm5wK4+8PAp8BFQJXERSsiIiJSOqmrs4hIKWVmOcBbwChgC3AmoUvz80B34EDgE3d/Llq/ibvPS1C4IiIiIqVWRqIDEBGRXzOz6sBjwB3u/ky07J/AM4ADdwAFwNFmlu7ug4H5iYpXREREpDRT4isiUjrlAvOAVwDMrIK7L4i6N38OTAFeJ3yPTwRwdeERERERKZLG+IqIlE4VgY7AwQDuvtnMykdVmx8Cst19I/CSu09NXJgiIiIipZ8SXxGRUsjdVwH/BHqZ2b7R4vzY04TEGMI8viIiIiKyA0p8RURKr38Di4GLzOwwd883s27AxcA40LRFIiIiIsWhqs4iIqWYmdUDTgf+CHwFtAZud/c3ExqYiIiISBmixFdEpAwwsz2iXyu4+1wzMxWzEhERESkeJb4iIiIiIiKS1DTGV0RERERERJKaEl8RERERERFJakp8RUREREREJKkp8RUREREREZGkpsRXREREREREkpoSXxGRIphZvpl9Y2ZTzWyEmdUo4eNdbGb9ot/PNrMGJXm8nR3HzA4wsy+iczDDzP5c0vGIiIiIlBRNZyQiUgQzW+/uVaLfnwNmu/sd/8P+jPCdW1CMdT8CrnH3Cb/3eMWMabvHMbNZwGnuPtnM0oGW7j79fzxesc+BiIiIyK6kFl8RkZ37DGgIYGZ7m9m7ZjbRzMabWatoeT0ze93MJkf/uplZ06i19BHga2BPM1sf26mZnWpmz0a//9nMrjGzU4FOwAtRa2tFM5trZn8zs8/MbIKZ7Wdm75nZ92Z2cdz+rjWzr8zsWzO7LVoWi+FJM5tmZu9H+/zVcQq95rrAYgB3z48lvWaWZWZvRMf43Mz2iY8/Lpap0bGLOgeDzGxKdJ7u2tF5FREREdkVlPiKiOxA1Np5GPBWtOgJ4DJ37whcAzwSLX8QGOvu7YH9gGnR8pbAEHfv4O7zdnY8d38NmAD0dfd93X1T9NRP7t4VGA88C5wKHADcHsV5JNAC6ALsC3Q0s4OibVsA/3L3NsBqoNcOjhPzD2BWlMxfZGYVouW3AZPcfR/gRmDIzl5T/DkAcoCTgP2jc/X3aJ3tnVcRERGR/1lGogMQESmlKprZN0BTYCIw2syqAN2AV0OvXQAyo5+HAv0gtJACa8ysJjDP3T/fBfHEEu8pQBV3XwesM7PN0fjjI6N/k6L1qhAS3vnAj+7+TbR8YvSadsjdbzezF6J9ngn0AQ4GegC9onU+NLNaZlZ9J7uLPweHA8+4+8ZoHyt3cl5FRERE/mdKfEVEirbJ3feNkrqRwB8JLa2r3X3f37CfDYUexxdWqEDx5UY/C+J+jz3OAAy4090fj9/IzJoWWj8fKNytuUju/j3wqJk9CSw3s1rRcX61KpDHL3sRxb+2+HNg/PIcEG33W8+riIiISLGpq7OIyA64+xrgckL3203Aj2bWG0KxJjNrH636H2BAtDzdzKptZ5dLzay1maUBJ29nnXVA1d8Y6nvAuVHrKWbW0Mzq7mSb7R7HzI61/za/tiAkzKuBcUDfaJ2DgZ/dfS0wl9DFGzPbD2i2nWO+H8VZKVo3K9p+e+dVRERE5H+mxFdEZCfcfRIwGTiDkPSdZ2aTCeN4T4xWuwI4xMymELoTt9nO7q4ntCB/SFQ8qgjPAo9tp+jU9mJ8H3gR+CyK4TV2njzv6DhnEcb4fgMMJYwFzgf+DHQys2+Bu4D+0frDgaxo/QHA7O3E+S6h2/aEaN1YQaztnVcRERGR/5mmMxIREREREZGkphZfERERERERSWpKfEVERERERCSpKfEVERERERGRpKbEV0RERERERJKaEl8RERERERFJakp8RURERERE5P/brwMZAAAAgEH+1vf4yqI18QUAAGAttKR9lr/SBOIAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Plot the distribution of Gender by Recruitment Source\n",
- "plt.figure(figsize=(12, 6))\n",
- "sns.countplot(x='RecruitmentSource', hue='GenderID', data=df)\n",
- "plt.xticks(rotation=45, ha='right')\n",
- "plt.title('Distribution of Gender by Recruitment Source')\n",
- "plt.xlabel('Recruitment Source')\n",
- "plt.ylabel('Count')\n",
- "plt.legend(title='Gender', bbox_to_anchor=(1.05, 1), loc='upper left')\n",
- "plt.show()\n",
- "\n",
- "# Plot the distribution of Race by Recruitment Source\n",
- "plt.figure(figsize=(12, 6))\n",
- "sns.countplot(x='RecruitmentSource', hue='RaceDesc', data=df)\n",
- "plt.xticks(rotation=45, ha='right')\n",
- "plt.title('Distribution of Race by Recruitment Source')\n",
- "plt.xlabel('Recruitment Source')\n",
- "plt.ylabel('Count')\n",
- "plt.legend(title='Race', bbox_to_anchor=(1.05, 1), loc='upper left')\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f120c42d",
- "metadata": {},
- "source": [
- "From the two graphs we can already see that certain Recruitment Sources have contributed to more diverse organization, notably `LinkedIn`, `Indeed`, and `Google Search`. And based on `GenderID`, we know that `LinkedIn` and `Indeed` is the highest sources of gaining new people."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4680ecdf",
- "metadata": {},
- "source": [
- "Thank you for taking the time to view this notebook! Hope this inspires you."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "61d25079",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}