diff --git a/Predictions/Numeral_Regression.ipynb b/Predictions/Numeral_Regression.ipynb
deleted file mode 100644
index e27fdc6..0000000
--- a/Predictions/Numeral_Regression.ipynb
+++ /dev/null
@@ -1,292 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "1732817d",
- "metadata": {},
- "outputs": [],
- "source": [
- "import pandas as pd"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "2c67c4f6",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Results | \n",
- " Reach | \n",
- " Impressions | \n",
- " Video_plays | \n",
- " Link_clicks | \n",
- " Engagement | \n",
- " Amount_Spent | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 1534 | \n",
- " 1534 | \n",
- " 1535 | \n",
- " 1448 | \n",
- " 0 | \n",
- " 62 | \n",
- " 2 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 8593 | \n",
- " 8593 | \n",
- " 10599 | \n",
- " 0 | \n",
- " 2 | \n",
- " 2 | \n",
- " 20 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 140 | \n",
- " 571 | \n",
- " 572 | \n",
- " 457 | \n",
- " 0 | \n",
- " 140 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 13 | \n",
- " 1396 | \n",
- " 1479 | \n",
- " 0 | \n",
- " 13 | \n",
- " 47 | \n",
- " 23 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 37616 | \n",
- " 5092 | \n",
- " 40135 | \n",
- " 39568 | \n",
- " 0 | \n",
- " 35711 | \n",
- " 133 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Results Reach Impressions Video_plays Link_clicks Engagement \\\n",
- "0 1534 1534 1535 1448 0 62 \n",
- "1 8593 8593 10599 0 2 2 \n",
- "2 140 571 572 457 0 140 \n",
- "3 13 1396 1479 0 13 47 \n",
- "4 37616 5092 40135 39568 0 35711 \n",
- "\n",
- " Amount_Spent \n",
- "0 2 \n",
- "1 20 \n",
- "2 5 \n",
- "3 23 \n",
- "4 133 "
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "data = {'Results': [1534,8593,140,13,37616,1060,694,64,17744],\n",
- " 'Reach': [1534,8593,571,1396,5092,6933,2008,2825,6154],\n",
- " 'Impressions': [1535,10599,572,1479,40135,11468,2435,5087,21332],\n",
- " 'Video_plays': [1448,0,457,0,39568,0,1225,0,20905],\n",
- " 'Link_clicks': [0,2,0,13,0,100,1,49,0],\n",
- " 'Engagement': [62,2,140,47,35711,1060,694,145,15604],\n",
- " 'Amount_Spent': [2,20,5,23,133,89,37,85,76]}\n",
- "\n",
- "df = pd.DataFrame(data)\n",
- "df.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "096de0cb",
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn.model_selection import train_test_split\n",
- "from sklearn.linear_model import LinearRegression\n",
- "from sklearn.metrics import mean_squared_error, r2_score"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "00517f34",
- "metadata": {},
- "outputs": [],
- "source": [
- "# X contains the features (Results, Reach, Impressions, Video Plays, Link clicks, and Post engagement)\n",
- "X = df[['Results', 'Reach', 'Impressions', 'Video_plays', 'Link_clicks', 'Engagement']]\n",
- "\n",
- "# y contains the target variable (Amount spent)\n",
- "y = df['Amount_Spent']"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "a56a0001",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Split dataset\n",
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "e54736e3",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "LinearRegression()"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Linear Regression model\n",
- "model = LinearRegression()\n",
- "model.fit(X_train, y_train)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "2b5aa068",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Predict model using X_test\n",
- "y_pred = model.predict(X_test)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "f9eb2f9e",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Mean Squared Error: 10546.18825415638\n",
- "R-squared: -8.984556927011957\n"
- ]
- }
- ],
- "source": [
- "# Evaluate model performance\n",
- "mse = mean_squared_error(y_test, y_pred)\n",
- "r2 = r2_score(y_test, y_pred)\n",
- "\n",
- "print(\"Mean Squared Error:\", mse)\n",
- "print(\"R-squared:\", r2)\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "0430cf6c",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Predicted amount spent: -34.41443487262584\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Users\\sang.yogi\\Anaconda3\\lib\\site-packages\\sklearn\\base.py:450: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names\n",
- " warnings.warn(\n"
- ]
- }
- ],
- "source": [
- "# Predict the amount spent for new data\n",
- "X_new = [[100, 2000, 5000, 1000, 50, 150]]\n",
- "predicted_amount_spent = model.predict(X_new)\n",
- "print(\"Predicted amount spent:\", predicted_amount_spent[0])\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "d17c4a06",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}