{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "5c3d106c", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt \n", "import seaborn as sns \n", "import plotly as py\n", "import os" ] }, { "cell_type": "code", "execution_count": 2, "id": "7e7ad082", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
IdSepalLengthCmSepalWidthCmPetalLengthCmPetalWidthCmSpecies
015.13.51.40.2Iris-setosa
124.93.01.40.2Iris-setosa
234.73.21.30.2Iris-setosa
344.63.11.50.2Iris-setosa
455.03.61.40.2Iris-setosa
\n", "
" ], "text/plain": [ " Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species\n", "0 1 5.1 3.5 1.4 0.2 Iris-setosa\n", "1 2 4.9 3.0 1.4 0.2 Iris-setosa\n", "2 3 4.7 3.2 1.3 0.2 Iris-setosa\n", "3 4 4.6 3.1 1.5 0.2 Iris-setosa\n", "4 5 5.0 3.6 1.4 0.2 Iris-setosa" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(r'D:\\archive\\iris.csv', encoding='utf-8')\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 3, "id": "a85eca81", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
IdSepalLengthCmSepalWidthCmPetalLengthCmPetalWidthCm
count150.000000150.000000150.000000150.000000150.000000
mean75.5000005.8433333.0540003.7586671.198667
std43.4453680.8280660.4335941.7644200.763161
min1.0000004.3000002.0000001.0000000.100000
25%38.2500005.1000002.8000001.6000000.300000
50%75.5000005.8000003.0000004.3500001.300000
75%112.7500006.4000003.3000005.1000001.800000
max150.0000007.9000004.4000006.9000002.500000
\n", "
" ], "text/plain": [ " Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm\n", "count 150.000000 150.000000 150.000000 150.000000 150.000000\n", "mean 75.500000 5.843333 3.054000 3.758667 1.198667\n", "std 43.445368 0.828066 0.433594 1.764420 0.763161\n", "min 1.000000 4.300000 2.000000 1.000000 0.100000\n", "25% 38.250000 5.100000 2.800000 1.600000 0.300000\n", "50% 75.500000 5.800000 3.000000 4.350000 1.300000\n", "75% 112.750000 6.400000 3.300000 5.100000 1.800000\n", "max 150.000000 7.900000 4.400000 6.900000 2.500000" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 5, "id": "fd80a4a8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Id int64\n", "SepalLengthCm float64\n", "SepalWidthCm float64\n", "PetalLengthCm float64\n", "PetalWidthCm float64\n", "Species object\n", "dtype: object" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.dtypes" ] }, { "cell_type": "code", "execution_count": 6, "id": "cc10d9c3", "metadata": {}, "outputs": [], "source": [ "import sklearn" ] }, { "cell_type": "code", "execution_count": 8, "id": "d07459e2", "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import confusion_matrix\n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "code", "execution_count": 9, "id": "f917c7bd", "metadata": {}, "outputs": [], "source": [ "from sklearn import datasets" ] }, { "cell_type": "code", "execution_count": 10, "id": "9d3e54c7", "metadata": {}, "outputs": [], "source": [ "iris = datasets.load_iris()" ] }, { "cell_type": "code", "execution_count": 12, "id": "1c34bd6d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'data': array([[5.1, 3.5, 1.4, 0.2],\n", " [4.9, 3. , 1.4, 0.2],\n", " [4.7, 3.2, 1.3, 0.2],\n", " [4.6, 3.1, 1.5, 0.2],\n", " [5. , 3.6, 1.4, 0.2],\n", " [5.4, 3.9, 1.7, 0.4],\n", " [4.6, 3.4, 1.4, 0.3],\n", " [5. , 3.4, 1.5, 0.2],\n", " [4.4, 2.9, 1.4, 0.2],\n", " [4.9, 3.1, 1.5, 0.1],\n", " [5.4, 3.7, 1.5, 0.2],\n", " [4.8, 3.4, 1.6, 0.2],\n", " [4.8, 3. , 1.4, 0.1],\n", " [4.3, 3. , 1.1, 0.1],\n", " [5.8, 4. , 1.2, 0.2],\n", " [5.7, 4.4, 1.5, 0.4],\n", " [5.4, 3.9, 1.3, 0.4],\n", " [5.1, 3.5, 1.4, 0.3],\n", " [5.7, 3.8, 1.7, 0.3],\n", " [5.1, 3.8, 1.5, 0.3],\n", " [5.4, 3.4, 1.7, 0.2],\n", " [5.1, 3.7, 1.5, 0.4],\n", " [4.6, 3.6, 1. , 0.2],\n", " [5.1, 3.3, 1.7, 0.5],\n", " [4.8, 3.4, 1.9, 0.2],\n", " [5. , 3. , 1.6, 0.2],\n", " [5. , 3.4, 1.6, 0.4],\n", " [5.2, 3.5, 1.5, 0.2],\n", " [5.2, 3.4, 1.4, 0.2],\n", " [4.7, 3.2, 1.6, 0.2],\n", " [4.8, 3.1, 1.6, 0.2],\n", " [5.4, 3.4, 1.5, 0.4],\n", " [5.2, 4.1, 1.5, 0.1],\n", " [5.5, 4.2, 1.4, 0.2],\n", " [4.9, 3.1, 1.5, 0.2],\n", " [5. , 3.2, 1.2, 0.2],\n", " [5.5, 3.5, 1.3, 0.2],\n", " [4.9, 3.6, 1.4, 0.1],\n", " [4.4, 3. , 1.3, 0.2],\n", " [5.1, 3.4, 1.5, 0.2],\n", " [5. , 3.5, 1.3, 0.3],\n", " [4.5, 2.3, 1.3, 0.3],\n", " [4.4, 3.2, 1.3, 0.2],\n", " [5. , 3.5, 1.6, 0.6],\n", " [5.1, 3.8, 1.9, 0.4],\n", " [4.8, 3. , 1.4, 0.3],\n", " [5.1, 3.8, 1.6, 0.2],\n", " [4.6, 3.2, 1.4, 0.2],\n", " [5.3, 3.7, 1.5, 0.2],\n", " [5. , 3.3, 1.4, 0.2],\n", " [7. , 3.2, 4.7, 1.4],\n", " [6.4, 3.2, 4.5, 1.5],\n", " [6.9, 3.1, 4.9, 1.5],\n", " [5.5, 2.3, 4. , 1.3],\n", " [6.5, 2.8, 4.6, 1.5],\n", " [5.7, 2.8, 4.5, 1.3],\n", " [6.3, 3.3, 4.7, 1.6],\n", " [4.9, 2.4, 3.3, 1. ],\n", " [6.6, 2.9, 4.6, 1.3],\n", " [5.2, 2.7, 3.9, 1.4],\n", " [5. , 2. , 3.5, 1. ],\n", " [5.9, 3. , 4.2, 1.5],\n", " [6. , 2.2, 4. , 1. ],\n", " [6.1, 2.9, 4.7, 1.4],\n", " [5.6, 2.9, 3.6, 1.3],\n", " [6.7, 3.1, 4.4, 1.4],\n", " [5.6, 3. , 4.5, 1.5],\n", " [5.8, 2.7, 4.1, 1. ],\n", " [6.2, 2.2, 4.5, 1.5],\n", " [5.6, 2.5, 3.9, 1.1],\n", " [5.9, 3.2, 4.8, 1.8],\n", " [6.1, 2.8, 4. , 1.3],\n", " [6.3, 2.5, 4.9, 1.5],\n", " [6.1, 2.8, 4.7, 1.2],\n", " [6.4, 2.9, 4.3, 1.3],\n", " [6.6, 3. , 4.4, 1.4],\n", " [6.8, 2.8, 4.8, 1.4],\n", " [6.7, 3. , 5. , 1.7],\n", " [6. , 2.9, 4.5, 1.5],\n", " [5.7, 2.6, 3.5, 1. ],\n", " [5.5, 2.4, 3.8, 1.1],\n", " [5.5, 2.4, 3.7, 1. ],\n", " [5.8, 2.7, 3.9, 1.2],\n", " [6. , 2.7, 5.1, 1.6],\n", " [5.4, 3. , 4.5, 1.5],\n", " [6. , 3.4, 4.5, 1.6],\n", " [6.7, 3.1, 4.7, 1.5],\n", " [6.3, 2.3, 4.4, 1.3],\n", " [5.6, 3. , 4.1, 1.3],\n", " [5.5, 2.5, 4. , 1.3],\n", " [5.5, 2.6, 4.4, 1.2],\n", " [6.1, 3. , 4.6, 1.4],\n", " [5.8, 2.6, 4. , 1.2],\n", " [5. , 2.3, 3.3, 1. ],\n", " [5.6, 2.7, 4.2, 1.3],\n", " [5.7, 3. , 4.2, 1.2],\n", " [5.7, 2.9, 4.2, 1.3],\n", " [6.2, 2.9, 4.3, 1.3],\n", " [5.1, 2.5, 3. , 1.1],\n", " [5.7, 2.8, 4.1, 1.3],\n", " [6.3, 3.3, 6. , 2.5],\n", " [5.8, 2.7, 5.1, 1.9],\n", " [7.1, 3. , 5.9, 2.1],\n", " [6.3, 2.9, 5.6, 1.8],\n", " [6.5, 3. , 5.8, 2.2],\n", " [7.6, 3. , 6.6, 2.1],\n", " [4.9, 2.5, 4.5, 1.7],\n", " [7.3, 2.9, 6.3, 1.8],\n", " [6.7, 2.5, 5.8, 1.8],\n", " [7.2, 3.6, 6.1, 2.5],\n", " [6.5, 3.2, 5.1, 2. ],\n", " [6.4, 2.7, 5.3, 1.9],\n", " [6.8, 3. , 5.5, 2.1],\n", " [5.7, 2.5, 5. , 2. ],\n", " [5.8, 2.8, 5.1, 2.4],\n", " [6.4, 3.2, 5.3, 2.3],\n", " [6.5, 3. , 5.5, 1.8],\n", " [7.7, 3.8, 6.7, 2.2],\n", " [7.7, 2.6, 6.9, 2.3],\n", " [6. , 2.2, 5. , 1.5],\n", " [6.9, 3.2, 5.7, 2.3],\n", " [5.6, 2.8, 4.9, 2. ],\n", " [7.7, 2.8, 6.7, 2. ],\n", " [6.3, 2.7, 4.9, 1.8],\n", " [6.7, 3.3, 5.7, 2.1],\n", " [7.2, 3.2, 6. , 1.8],\n", " [6.2, 2.8, 4.8, 1.8],\n", " [6.1, 3. , 4.9, 1.8],\n", " [6.4, 2.8, 5.6, 2.1],\n", " [7.2, 3. , 5.8, 1.6],\n", " [7.4, 2.8, 6.1, 1.9],\n", " [7.9, 3.8, 6.4, 2. ],\n", " [6.4, 2.8, 5.6, 2.2],\n", " [6.3, 2.8, 5.1, 1.5],\n", " [6.1, 2.6, 5.6, 1.4],\n", " [7.7, 3. , 6.1, 2.3],\n", " [6.3, 3.4, 5.6, 2.4],\n", " [6.4, 3.1, 5.5, 1.8],\n", " [6. , 3. , 4.8, 1.8],\n", " [6.9, 3.1, 5.4, 2.1],\n", " [6.7, 3.1, 5.6, 2.4],\n", " [6.9, 3.1, 5.1, 2.3],\n", " [5.8, 2.7, 5.1, 1.9],\n", " [6.8, 3.2, 5.9, 2.3],\n", " [6.7, 3.3, 5.7, 2.5],\n", " [6.7, 3. , 5.2, 2.3],\n", " [6.3, 2.5, 5. , 1.9],\n", " [6.5, 3. , 5.2, 2. ],\n", " [6.2, 3.4, 5.4, 2.3],\n", " [5.9, 3. , 5.1, 1.8]]),\n", " 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),\n", " 'frame': None,\n", " 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='