{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "5c3d106c",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt \n",
"import seaborn as sns \n",
"import plotly as py\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7e7ad082",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Id | \n",
" SepalLengthCm | \n",
" SepalWidthCm | \n",
" PetalLengthCm | \n",
" PetalWidthCm | \n",
" Species | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 1 | \n",
" 5.1 | \n",
" 3.5 | \n",
" 1.4 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
" | 1 | \n",
" 2 | \n",
" 4.9 | \n",
" 3.0 | \n",
" 1.4 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
" | 2 | \n",
" 3 | \n",
" 4.7 | \n",
" 3.2 | \n",
" 1.3 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
" | 3 | \n",
" 4 | \n",
" 4.6 | \n",
" 3.1 | \n",
" 1.5 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
" | 4 | \n",
" 5 | \n",
" 5.0 | \n",
" 3.6 | \n",
" 1.4 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species\n",
"0 1 5.1 3.5 1.4 0.2 Iris-setosa\n",
"1 2 4.9 3.0 1.4 0.2 Iris-setosa\n",
"2 3 4.7 3.2 1.3 0.2 Iris-setosa\n",
"3 4 4.6 3.1 1.5 0.2 Iris-setosa\n",
"4 5 5.0 3.6 1.4 0.2 Iris-setosa"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(r'D:\\archive\\iris.csv', encoding='utf-8')\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a85eca81",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Id | \n",
" SepalLengthCm | \n",
" SepalWidthCm | \n",
" PetalLengthCm | \n",
" PetalWidthCm | \n",
"
\n",
" \n",
" \n",
" \n",
" | count | \n",
" 150.000000 | \n",
" 150.000000 | \n",
" 150.000000 | \n",
" 150.000000 | \n",
" 150.000000 | \n",
"
\n",
" \n",
" | mean | \n",
" 75.500000 | \n",
" 5.843333 | \n",
" 3.054000 | \n",
" 3.758667 | \n",
" 1.198667 | \n",
"
\n",
" \n",
" | std | \n",
" 43.445368 | \n",
" 0.828066 | \n",
" 0.433594 | \n",
" 1.764420 | \n",
" 0.763161 | \n",
"
\n",
" \n",
" | min | \n",
" 1.000000 | \n",
" 4.300000 | \n",
" 2.000000 | \n",
" 1.000000 | \n",
" 0.100000 | \n",
"
\n",
" \n",
" | 25% | \n",
" 38.250000 | \n",
" 5.100000 | \n",
" 2.800000 | \n",
" 1.600000 | \n",
" 0.300000 | \n",
"
\n",
" \n",
" | 50% | \n",
" 75.500000 | \n",
" 5.800000 | \n",
" 3.000000 | \n",
" 4.350000 | \n",
" 1.300000 | \n",
"
\n",
" \n",
" | 75% | \n",
" 112.750000 | \n",
" 6.400000 | \n",
" 3.300000 | \n",
" 5.100000 | \n",
" 1.800000 | \n",
"
\n",
" \n",
" | max | \n",
" 150.000000 | \n",
" 7.900000 | \n",
" 4.400000 | \n",
" 6.900000 | \n",
" 2.500000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm\n",
"count 150.000000 150.000000 150.000000 150.000000 150.000000\n",
"mean 75.500000 5.843333 3.054000 3.758667 1.198667\n",
"std 43.445368 0.828066 0.433594 1.764420 0.763161\n",
"min 1.000000 4.300000 2.000000 1.000000 0.100000\n",
"25% 38.250000 5.100000 2.800000 1.600000 0.300000\n",
"50% 75.500000 5.800000 3.000000 4.350000 1.300000\n",
"75% 112.750000 6.400000 3.300000 5.100000 1.800000\n",
"max 150.000000 7.900000 4.400000 6.900000 2.500000"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "fd80a4a8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Id int64\n",
"SepalLengthCm float64\n",
"SepalWidthCm float64\n",
"PetalLengthCm float64\n",
"PetalWidthCm float64\n",
"Species object\n",
"dtype: object"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "cc10d9c3",
"metadata": {},
"outputs": [],
"source": [
"import sklearn"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d07459e2",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix\n",
"from sklearn.model_selection import train_test_split"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f917c7bd",
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9d3e54c7",
"metadata": {},
"outputs": [],
"source": [
"iris = datasets.load_iris()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "1c34bd6d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'data': array([[5.1, 3.5, 1.4, 0.2],\n",
" [4.9, 3. , 1.4, 0.2],\n",
" [4.7, 3.2, 1.3, 0.2],\n",
" [4.6, 3.1, 1.5, 0.2],\n",
" [5. , 3.6, 1.4, 0.2],\n",
" [5.4, 3.9, 1.7, 0.4],\n",
" [4.6, 3.4, 1.4, 0.3],\n",
" [5. , 3.4, 1.5, 0.2],\n",
" [4.4, 2.9, 1.4, 0.2],\n",
" [4.9, 3.1, 1.5, 0.1],\n",
" [5.4, 3.7, 1.5, 0.2],\n",
" [4.8, 3.4, 1.6, 0.2],\n",
" [4.8, 3. , 1.4, 0.1],\n",
" [4.3, 3. , 1.1, 0.1],\n",
" [5.8, 4. , 1.2, 0.2],\n",
" [5.7, 4.4, 1.5, 0.4],\n",
" [5.4, 3.9, 1.3, 0.4],\n",
" [5.1, 3.5, 1.4, 0.3],\n",
" [5.7, 3.8, 1.7, 0.3],\n",
" [5.1, 3.8, 1.5, 0.3],\n",
" [5.4, 3.4, 1.7, 0.2],\n",
" [5.1, 3.7, 1.5, 0.4],\n",
" [4.6, 3.6, 1. , 0.2],\n",
" [5.1, 3.3, 1.7, 0.5],\n",
" [4.8, 3.4, 1.9, 0.2],\n",
" [5. , 3. , 1.6, 0.2],\n",
" [5. , 3.4, 1.6, 0.4],\n",
" [5.2, 3.5, 1.5, 0.2],\n",
" [5.2, 3.4, 1.4, 0.2],\n",
" [4.7, 3.2, 1.6, 0.2],\n",
" [4.8, 3.1, 1.6, 0.2],\n",
" [5.4, 3.4, 1.5, 0.4],\n",
" [5.2, 4.1, 1.5, 0.1],\n",
" [5.5, 4.2, 1.4, 0.2],\n",
" [4.9, 3.1, 1.5, 0.2],\n",
" [5. , 3.2, 1.2, 0.2],\n",
" [5.5, 3.5, 1.3, 0.2],\n",
" [4.9, 3.6, 1.4, 0.1],\n",
" [4.4, 3. , 1.3, 0.2],\n",
" [5.1, 3.4, 1.5, 0.2],\n",
" [5. , 3.5, 1.3, 0.3],\n",
" [4.5, 2.3, 1.3, 0.3],\n",
" [4.4, 3.2, 1.3, 0.2],\n",
" [5. , 3.5, 1.6, 0.6],\n",
" [5.1, 3.8, 1.9, 0.4],\n",
" [4.8, 3. , 1.4, 0.3],\n",
" [5.1, 3.8, 1.6, 0.2],\n",
" [4.6, 3.2, 1.4, 0.2],\n",
" [5.3, 3.7, 1.5, 0.2],\n",
" [5. , 3.3, 1.4, 0.2],\n",
" [7. , 3.2, 4.7, 1.4],\n",
" [6.4, 3.2, 4.5, 1.5],\n",
" [6.9, 3.1, 4.9, 1.5],\n",
" [5.5, 2.3, 4. , 1.3],\n",
" [6.5, 2.8, 4.6, 1.5],\n",
" [5.7, 2.8, 4.5, 1.3],\n",
" [6.3, 3.3, 4.7, 1.6],\n",
" [4.9, 2.4, 3.3, 1. ],\n",
" [6.6, 2.9, 4.6, 1.3],\n",
" [5.2, 2.7, 3.9, 1.4],\n",
" [5. , 2. , 3.5, 1. ],\n",
" [5.9, 3. , 4.2, 1.5],\n",
" [6. , 2.2, 4. , 1. ],\n",
" [6.1, 2.9, 4.7, 1.4],\n",
" [5.6, 2.9, 3.6, 1.3],\n",
" [6.7, 3.1, 4.4, 1.4],\n",
" [5.6, 3. , 4.5, 1.5],\n",
" [5.8, 2.7, 4.1, 1. ],\n",
" [6.2, 2.2, 4.5, 1.5],\n",
" [5.6, 2.5, 3.9, 1.1],\n",
" [5.9, 3.2, 4.8, 1.8],\n",
" [6.1, 2.8, 4. , 1.3],\n",
" [6.3, 2.5, 4.9, 1.5],\n",
" [6.1, 2.8, 4.7, 1.2],\n",
" [6.4, 2.9, 4.3, 1.3],\n",
" [6.6, 3. , 4.4, 1.4],\n",
" [6.8, 2.8, 4.8, 1.4],\n",
" [6.7, 3. , 5. , 1.7],\n",
" [6. , 2.9, 4.5, 1.5],\n",
" [5.7, 2.6, 3.5, 1. ],\n",
" [5.5, 2.4, 3.8, 1.1],\n",
" [5.5, 2.4, 3.7, 1. ],\n",
" [5.8, 2.7, 3.9, 1.2],\n",
" [6. , 2.7, 5.1, 1.6],\n",
" [5.4, 3. , 4.5, 1.5],\n",
" [6. , 3.4, 4.5, 1.6],\n",
" [6.7, 3.1, 4.7, 1.5],\n",
" [6.3, 2.3, 4.4, 1.3],\n",
" [5.6, 3. , 4.1, 1.3],\n",
" [5.5, 2.5, 4. , 1.3],\n",
" [5.5, 2.6, 4.4, 1.2],\n",
" [6.1, 3. , 4.6, 1.4],\n",
" [5.8, 2.6, 4. , 1.2],\n",
" [5. , 2.3, 3.3, 1. ],\n",
" [5.6, 2.7, 4.2, 1.3],\n",
" [5.7, 3. , 4.2, 1.2],\n",
" [5.7, 2.9, 4.2, 1.3],\n",
" [6.2, 2.9, 4.3, 1.3],\n",
" [5.1, 2.5, 3. , 1.1],\n",
" [5.7, 2.8, 4.1, 1.3],\n",
" [6.3, 3.3, 6. , 2.5],\n",
" [5.8, 2.7, 5.1, 1.9],\n",
" [7.1, 3. , 5.9, 2.1],\n",
" [6.3, 2.9, 5.6, 1.8],\n",
" [6.5, 3. , 5.8, 2.2],\n",
" [7.6, 3. , 6.6, 2.1],\n",
" [4.9, 2.5, 4.5, 1.7],\n",
" [7.3, 2.9, 6.3, 1.8],\n",
" [6.7, 2.5, 5.8, 1.8],\n",
" [7.2, 3.6, 6.1, 2.5],\n",
" [6.5, 3.2, 5.1, 2. ],\n",
" [6.4, 2.7, 5.3, 1.9],\n",
" [6.8, 3. , 5.5, 2.1],\n",
" [5.7, 2.5, 5. , 2. ],\n",
" [5.8, 2.8, 5.1, 2.4],\n",
" [6.4, 3.2, 5.3, 2.3],\n",
" [6.5, 3. , 5.5, 1.8],\n",
" [7.7, 3.8, 6.7, 2.2],\n",
" [7.7, 2.6, 6.9, 2.3],\n",
" [6. , 2.2, 5. , 1.5],\n",
" [6.9, 3.2, 5.7, 2.3],\n",
" [5.6, 2.8, 4.9, 2. ],\n",
" [7.7, 2.8, 6.7, 2. ],\n",
" [6.3, 2.7, 4.9, 1.8],\n",
" [6.7, 3.3, 5.7, 2.1],\n",
" [7.2, 3.2, 6. , 1.8],\n",
" [6.2, 2.8, 4.8, 1.8],\n",
" [6.1, 3. , 4.9, 1.8],\n",
" [6.4, 2.8, 5.6, 2.1],\n",
" [7.2, 3. , 5.8, 1.6],\n",
" [7.4, 2.8, 6.1, 1.9],\n",
" [7.9, 3.8, 6.4, 2. ],\n",
" [6.4, 2.8, 5.6, 2.2],\n",
" [6.3, 2.8, 5.1, 1.5],\n",
" [6.1, 2.6, 5.6, 1.4],\n",
" [7.7, 3. , 6.1, 2.3],\n",
" [6.3, 3.4, 5.6, 2.4],\n",
" [6.4, 3.1, 5.5, 1.8],\n",
" [6. , 3. , 4.8, 1.8],\n",
" [6.9, 3.1, 5.4, 2.1],\n",
" [6.7, 3.1, 5.6, 2.4],\n",
" [6.9, 3.1, 5.1, 2.3],\n",
" [5.8, 2.7, 5.1, 1.9],\n",
" [6.8, 3.2, 5.9, 2.3],\n",
" [6.7, 3.3, 5.7, 2.5],\n",
" [6.7, 3. , 5.2, 2.3],\n",
" [6.3, 2.5, 5. , 1.9],\n",
" [6.5, 3. , 5.2, 2. ],\n",
" [6.2, 3.4, 5.4, 2.3],\n",
" [5.9, 3. , 5.1, 1.8]]),\n",
" 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),\n",
" 'frame': None,\n",
" 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='