mirror of
https://github.com/youronlydimwit/Data_ScienceUse_Cases.git
synced 2025-12-13 10:19:48 +01:00
193 lines
3.6 KiB
Plaintext
193 lines
3.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "410cdd47",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f769b682",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.01390952774409444"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# T-Multiplier\n",
|
|
"tstar = 1.96\n",
|
|
"# P hat value\n",
|
|
"p = .85\n",
|
|
"# Number of observations\n",
|
|
"n = 659\n",
|
|
"\n",
|
|
"# Calculate Standard Error\n",
|
|
"se = np.sqrt((p * (1 - p))/n)\n",
|
|
"se"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "d77c95f1",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(0.8227373256215749, 0.8772626743784251)"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Lower confidence band\n",
|
|
"lcb = p - tstar * se\n",
|
|
"# Upper confidence band\n",
|
|
"ucb = p + tstar * se\n",
|
|
"# Show confidence bands\n",
|
|
"(lcb, ucb)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "1d08b43b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Same process, using statsmodels library\n",
|
|
"import statsmodels.api as sm"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "41cb97c9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(0.8227378265796143, 0.8772621734203857)"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Get confidence bands\n",
|
|
"# n = observations\n",
|
|
"# p = result of a survey \n",
|
|
"sm.stats.proportion_confint(n * p, n)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4234b441",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Try to import dataset\n",
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"df = pd.read_csv(\"Cartwheeldata.csv\")\n",
|
|
"df.head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d03c3d4f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Mean of a column\n",
|
|
"mean = df[\"CWDistance\"].mean()\n",
|
|
"# Standard deviation of a column\n",
|
|
"sd = df[\"CWDistance\"].std()\n",
|
|
"# Rows of the dataframe\n",
|
|
"n = len(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c52dddd2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"tstar = 2.064\n",
|
|
"\n",
|
|
"se = sd/np.sqrt(n)\n",
|
|
"\n",
|
|
"se"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2dfbab7d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"lcb = mean - tstar * se\n",
|
|
"ucb = mean + tstar * se\n",
|
|
"(lcb, ucb)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "649c18b1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#..OR use statsmodels instead\n",
|
|
"sm.stats.DescrStatsW(df[\"#ColumnName\"]).zconfint_mean()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|