Files
Data_ScienceUse_Cases/Confidence_Interval.ipynb
2023-09-05 10:19:56 +07:00

193 lines
3.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "410cdd47",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f769b682",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.01390952774409444"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# T-Multiplier\n",
"tstar = 1.96\n",
"# P hat value\n",
"p = .85\n",
"# Number of observations\n",
"n = 659\n",
"\n",
"# Calculate Standard Error\n",
"se = np.sqrt((p * (1 - p))/n)\n",
"se"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d77c95f1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.8227373256215749, 0.8772626743784251)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Lower confidence band\n",
"lcb = p - tstar * se\n",
"# Upper confidence band\n",
"ucb = p + tstar * se\n",
"# Show confidence bands\n",
"(lcb, ucb)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1d08b43b",
"metadata": {},
"outputs": [],
"source": [
"# Same process, using statsmodels library\n",
"import statsmodels.api as sm"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "41cb97c9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.8227378265796143, 0.8772621734203857)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get confidence bands\n",
"# n = observations\n",
"# p = result of a survey \n",
"sm.stats.proportion_confint(n * p, n)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4234b441",
"metadata": {},
"outputs": [],
"source": [
"# Try to import dataset\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"Cartwheeldata.csv\")\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d03c3d4f",
"metadata": {},
"outputs": [],
"source": [
"# Mean of a column\n",
"mean = df[\"CWDistance\"].mean()\n",
"# Standard deviation of a column\n",
"sd = df[\"CWDistance\"].std()\n",
"# Rows of the dataframe\n",
"n = len(df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c52dddd2",
"metadata": {},
"outputs": [],
"source": [
"tstar = 2.064\n",
"\n",
"se = sd/np.sqrt(n)\n",
"\n",
"se"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2dfbab7d",
"metadata": {},
"outputs": [],
"source": [
"lcb = mean - tstar * se\n",
"ucb = mean + tstar * se\n",
"(lcb, ucb)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "649c18b1",
"metadata": {},
"outputs": [],
"source": [
"#..OR use statsmodels instead\n",
"sm.stats.DescrStatsW(df[\"#ColumnName\"]).zconfint_mean()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}